

About	This	E-Book

EPUB	is	an	open,	industry-standard	format	for	e-books.	However,	support	for	EPUB
and	its	many	features	varies	across	reading	devices	and	applications.	Use	your	device	or
app	settings	to	customize	the	presentation	to	your	liking.	Settings	that	you	can	customize
often	include	font,	font	size,	single	or	double	column,	landscape	or	portrait	mode,	and
figures	that	you	can	click	or	tap	to	enlarge.	For	additional	information	about	the	settings
and	features	on	your	reading	device	or	app,	visit	the	device	manufacturer’s	Web	site.

Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the
presentation	of	these	elements,	view	the	e-book	in	single-column,	landscape	mode	and
adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting	code	and
configurations	in	the	reflowable	text	format,	we	have	included	images	of	the	code	that
mimic	the	presentation	found	in	the	print	book;	therefore,	where	the	reflowable	format
may	compromise	the	presentation	of	the	code	listing,	you	will	see	a	“Click	here	to	view
code	image”	link.	Click	the	link	to	view	the	print-fidelity	code	image.	To	return	to	the
previous	page	viewed,	click	the	Back	button	on	your	device	or	app.

Sams	Teach	Yourself	SQL	in	24	Hours
SIXTH	EDITION

Ryan	Stephens
Arie	D.	Jones
Ron	Plew

800	East	96th	Street,	Indianapolis,	Indiana,	46240	USA

Sams	Teach	Yourself	SQL	in	24	Hours,	Sixth	Edition

Copyright	©	2016	by	Pearson	Education,	Inc.

All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is	protected
by	copyright,	and	permission	must	be	obtained	from	the	publisher	prior	to	any	prohibited
reproduction,	storage	in	a	retrieval	system,	or	transmission	in	any	form	or	by	any	means,
electronic,	mechanical,	photocopying,	recording,	or	likewise.	For	information	regarding
permissions,	request	forms,	and	the	appropriate	contacts	within	the	Pearson	Education
Global	Rights	&	Permissions	Department,	please	visit	www.pearsoned.com/permissions/.
No	patent	liability	is	assumed	with	respect	to	the	use	of	the	information	contained	herein.
Although	every	precaution	has	been	taken	in	the	preparation	of	this	book,	the	publisher
and	author	assume	no	responsibility	for	errors	or	omissions.	Nor	is	any	liability	assumed
for	damages	resulting	from	the	use	of	the	information	contained	herein.

Microsoft	and	Microsoft	SQL	Server	are	either	registered	trademarks	or	trademarks	of
Microsoft	Corporation	in	the	United	States	and/or	other	countries.

Oracle	and	Java	are	registered	trademarks	of	Oracle	and/or	its	affiliates.	Other	names	may
be	trademarks	of	their	respective	owners.

ISBN-13:	978-0-672-33759-8
ISBN-10:	0-672-33759-2

Library	of	Congress	Control	Number:	2015915011

Printed	in	the	United	States	of	America

First	Printing	December	2015

Editor-in-Chief
Mark	Taub

Executive	Editor
Laura	Lewin

Development	Editor
Michael	Thurston

Managing	Editor
Kristy	Hart

Senior	Project	Editor
Lori	Lyons

Copy	Editor
Apostrophe	Editing	Services

Indexer
Lisa	Stumpf

Proofreader
Debbie	Williams

Technical	Editors
Marshall	Pyle

http://www.pearsoned.com/permissions/

Jacinda	Simmerman

Editorial	Assistant
Olivia	Basegio

Cover	Designer
Mark	Shirar

Compositor
Nonie	Ratcliff

Trademarks

All	terms	mentioned	in	this	book	that	are	known	to	be	trademarks	or	service	marks	have
been	appropriately	capitalized.	Sams	Publishing	cannot	attest	to	the	accuracy	of	this
information.	Use	of	a	term	in	this	book	should	not	be	regarded	as	affecting	the	validity	of
any	trademark	or	service	mark.

Warning	and	Disclaimer

Every	effort	has	been	made	to	make	this	book	as	complete	and	as	accurate	as	possible,	but
no	warranty	or	fitness	is	implied.	The	information	provided	is	on	an	“as	is”	basis.	The
authors	and	the	publisher	shall	have	neither	liability	nor	responsibility	to	any	person	or
entity	with	respect	to	any	loss	or	damages	arising	from	the	information	contained	in	this
book.

Special	Sales

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales	opportunities
(which	may	include	electronic	versions;	custom	cover	designs;	and	content	particular	to
your	business,	training	goals,	marketing	focus,	or	branding	interests),	please	contact	our
corporate	sales	department	at	corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact	governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	international@pearsoned.com.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com

Contents	at	a	Glance

Part	I:	An	SQL	Concepts	Overview

HOUR	1	Welcome	to	the	World	of	SQL

Part	II:	Building	Your	Database

HOUR	2	Defining	Data	Structures

3	Managing	Database	Objects

4	The	Normalization	Process

5	Manipulating	Data

6	Managing	Database	Transactions

Part	III:	Getting	Effective	Results	from	Queries

HOUR	7	Introduction	to	Database	Queries

8	Using	Operators	to	Categorize	Data

9	Summarizing	Data	Results	from	a	Query

10	Sorting	and	Grouping	Data

11	Restructuring	the	Appearance	of	Data

12	Understanding	Dates	and	Times

Part	IV:	Building	Sophisticated	Database	Queries

HOUR	13	Joining	Tables	in	Queries

14	Using	Subqueries	to	Define	Unknown	Data

15	Combining	Multiple	Queries	into	One

Part	V:	SQL	Performance	Tuning

HOUR	16	Using	Indexes	to	Improve	Performance

17	Improving	Database	Performance

Part	VI:	Using	SQL	to	Manage	Users	and	Security

HOUR	18	Managing	Database	Users

19	Managing	Database	Security

Part	VII:	Summarized	Data	Structures

HOUR	20	Creating	and	Using	Views	and	Synonyms

21	Working	with	the	System	Catalog

Part	VIII:	Applying	SQL	Fundamentals	in	Today’s	World

HOUR	22	Advanced	SQL	Topics

23	Extending	SQL	to	the	Enterprise,	the	Internet,	and	the	Intranet

24	Extensions	to	Standard	SQL

Part	IX:	Appendixes

APPENDIX	A	Common	SQL	Commands

B	Installing	Oracle	and	Microsoft	SQL

C	Answers	to	Quizzes	and	Exercises

D	Bonus	Exercises

E	Glossary

Index

Table	of	Contents

Part	I:	An	SQL	Concepts	Overview

HOUR	1:	Welcome	to	the	World	of	SQL

SQL	Definition	and	History

SQL	Sessions

Types	of	SQL	Commands

Canary	Airlines:	The	Database	Used	in	This	Book

Summary

Q&A

Workshop

Part	II:	Building	Your	Database

HOUR	2:	Defining	Data	Structures

What	Is	Data?

Basic	Data	Types

Summary

Q&A

Workshop

HOUR	3:	Managing	Database	Objects

Database	Objects	and	Schema

Tables:	The	Primary	Storage	for	Data

Integrity	Constraints

Summary

Q&A

Workshop

HOUR	4:	The	Normalization	Process

Normalizing	a	Database

Denormalizing	a	Database

Summary

Q&A

Workshop

HOUR	5:	Manipulating	Data

Overview	of	Data	Manipulation

Populating	Tables	with	New	Data

Updating	Existing	Data

Deleting	Data	from	Tables

Summary

Q&A

Workshop

HOUR	6:	Managing	Database	Transactions

What	Is	a	Transaction?

Controlling	Transactions

Poor	Transactional	Control

Summary

Q&A

Workshop

Part	III:	Getting	Effective	Results	from	Queries

HOUR	7:	Introduction	to	Database	Queries

The	SELECT	Statement

Case-Sensitivity

Fundamentals	of	Query	Writing

Summary

Q&A

Workshop

HOUR	8:	Using	Operators	to	Categorize	Data

What	Is	an	Operator	in	SQL?

Comparison	Operators

Logical	Operators

Conjunctive	Operators

Negative	Operators

Arithmetic	Operators

Summary

Q&A

Workshop

HOUR	9:	Summarizing	Data	Results	from	a	Query

Aggregate	Functions

Summary

Q&A

Workshop

HOUR	10:	Sorting	and	Grouping	Data

Why	Group	Data?

The	GROUP	BY	Clause

GROUP	BY	Versus	ORDER	BY

CUBE	and	ROLLUP	Expressions

The	HAVING	Clause

Summary

Q&A

Workshop

HOUR	11:	Restructuring	the	Appearance	of	Data

ANSI	Character	Functions

Common	Character	Functions

Miscellaneous	Character	Functions

Mathematical	Functions

Conversion	Functions

Combining	Character	Functions

Summary

Q&A

Workshop

HOUR	12:	Understanding	Dates	and	Times

How	Is	a	Date	Stored?

Date	Functions

Date	Conversions

Summary

Q&A

Workshop

Part	IV:	Building	Sophisticated	Database	Queries

HOUR	13:	Joining	Tables	in	Queries

Selecting	Data	from	Multiple	Tables

Understanding	Joins

Join	Considerations

Summary

Q&A

Workshop

HOUR	14:	Using	Subqueries	to	Define	Unknown	Data

What	Is	a	Subquery?

Embedded	Subqueries

Correlated	Subqueries

Subquery	Performance

Summary

Q&A

Workshop

HOUR	15:	Combining	Multiple	Queries	into	One

Single	Queries	Versus	Compound	Queries

Compound	Query	Operators

Using	ORDER	BY	with	a	Compound	Query

Using	GROUP	BY	with	a	Compound	Query

Retrieving	Accurate	Data

Summary

Q&A

Workshop

Part	V:	SQL	Performance	Tuning

HOUR	16:	Using	Indexes	to	Improve	Performance

What	Is	an	Index?

How	Do	Indexes	Work?

The	CREATE	INDEX	Command

Types	of	Indexes

When	Should	Indexes	Be	Considered?

When	Should	Indexes	Be	Avoided?

Altering	an	Index

Dropping	an	Index

Summary

Q&A

Workshop

HOUR	17:	Improving	Database	Performance

What	Is	SQL	Statement	Tuning?

Database	Tuning	Versus	SQL	Statement	Tuning

Formatting	Your	SQL	Statement

Full	Table	Scans

Other	Performance	Considerations

Cost-Based	Optimization

Summary

Q&A

Workshop

Part	VI:	Using	SQL	to	Manage	Users	and	Security

HOUR	18:	Managing	Database	Users

User	Management	in	the	Database

The	Management	Process

Tools	Utilized	by	Database	Users

Summary

Q&A

Workshop

HOUR	19:	Managing	Database	Security

What	Is	Database	Security?

What	Are	Privileges?

Controlling	User	Access

Controlling	Privileges	Through	Roles

Summary

Q&A

Workshop

Part	VII:	Summarized	Data	Structures

HOUR	20:	Creating	and	Using	Views	and	Synonyms

What	Is	a	View?

Creating	Views

Updating	Data	Through	a	View

Dropping	a	View

Performance	Impact	of	Nested	Views

What	Is	a	Synonym?

Summary

Q&A

Workshop

HOUR	21:	Working	with	the	System	Catalog

What	Is	the	System	Catalog?

How	Is	the	System	Catalog	Created?

What	Is	Contained	in	the	System	Catalog?

System	Catalog	Tables	by	Implementation

Querying	the	System	Catalog

Updating	System	Catalog	Objects

Summary

Q&A

Workshop

Part	VIII:	Applying	SQL	Fundamentals	in	Today’s	World

HOUR	22:	Advanced	SQL	Topics

Cursors

Stored	Procedures	and	Functions

Triggers

Dynamic	SQL

Call-Level	Interface

Using	SQL	to	Generate	SQL

Direct	Versus	Embedded	SQL

Windowed	Table	Functions

Working	with	XML

Summary

Q&A

Workshop

HOUR	23:	Extending	SQL	to	the	Enterprise,	the	Internet,	and	the	Intranet

SQL	and	the	Enterprise

Accessing	a	Remote	Database

SQL	and	the	Internet

SQL	and	the	Intranet

Summary

Q&A

Workshop

HOUR	24:	Extensions	to	Standard	SQL

Various	Implementations

Example	Extensions

Interactive	SQL	Statements

Summary

Q&A

Workshop

Part	IX:	Appendixes

APPENDIX	A:	Common	SQL	Commands

SQL	Statements

SQL	Clauses

APPENDIX	B:	Installing	Oracle	and	Microsoft	SQL

Windows	Installation	Instructions	for	Oracle

Windows	Installation	Instructions	for	Microsoft	SQL	Server

APPENDIX	C:	Answers	to	Quizzes	and	Exercises

Hour	1,	“Welcome	to	the	World	of	SQL”

Hour	2,	“Defining	Data	Structures”

Hour	3,	“Managing	Database	Objects”

Hour	4,	“The	Normalization	Process”

Hour	5,	“Manipulating	Data”

Hour	6,	“Managing	Database	Transactions”

Hour	7,	“Introduction	to	the	Database	Queries”

Hour	8,	“Using	Operators	to	Categorize	Data”

Hour	9,	“Summarizing	Data	Results	from	a	Query”

Hour	10,	“Sorting	and	Grouping	Data”

Hour	11,	“Restructuring	the	Appearance	of	Data”

Hour	12,	“Understanding	Dates	and	Times”

Hour	13,	“Joining	Tables	in	Queries”

Hour	14,	“Using	Subqueries	to	Define	Unknown	Data”

Hour	15,	“Combining	Multiple	Queries	into	One”

Hour	16,	“Using	Indexes	to	Improve	Performance”

Hour	17,	“Improving	Database	Performance”

Hour	18,	“Managing	Database	Users”

Hour	19,	“Managing	Database	Security”

Hour	20,	“Creating	and	Using	Views	and	Synonyms”

Hour	21,	“Working	with	the	System	Catalog”

Hour	22,	“Advanced	SQL	Topics”

Hour	23,	“Extending	SQL	to	the	Enterprise,	the	Internet,	and	the	Intranet”

Hour	24,	“Extensions	to	Standard	SQL”

APPENDIX	D:	Bonus	Exercises

APPENDIX	E:	Glossary

Index

About	the	Authors

For	more	than	20	years	each,	the	authors	have	studied,	applied,	and	documented	the	SQL
standard	and	its	application	to	critical	database	systems	in	this	book.	The	authors	are
experts	in	data	management,	specializing	in	Oracle,	Microsoft,	and	other	leading
technologies.

Ryan	Stephens	is	the	co-founder	and	CEO	of	Perpetual	Technologies,	Inc.	and	Indy	Data
Partners	in	Indianapolis.	Ryan	has	studied	and	consulted	in	the	IT	field	for	more	than	20
years,	specializing	in	data	management,	SQL,	and	Oracle.	Ryan	authored	and	taught
database	and	SQL	classes	for	Indiana	University-Purdue	University	in	Indianapolis	for	5
years,	and	was	a	programmer	analyst	for	the	Indiana	Army	National	Guard	for	12	years.
Ryan	has	written	a	variety	of	database	and	SQL	books	for	Sams	Publishing.

Arie	D.	Jones	is	the	Vice	President	for	Emerging	Technologies	for	Indy	Data	Partners,
Inc.	(IDP)	in	Indianapolis.	Arie	leads	IDP’s	team	of	experts	in	planning,	design,
development,	deployment,	and	management	of	database	environments	and	applications	to
achieve	the	best	combination	of	tools	and	services	for	each	client.	He	is	a	regular	speaker
at	technical	events	and	has	authored	several	books	and	articles	pertaining	to	database-
related	topics.

Ronald	Plew	is	retired	as	co-founder	and	vice	president	of	Perpetual	Technologies,	Inc.
Ron	studied	and	consulted	in	the	field	of	relational	database	technology	for	more	than	20
years	and	has	co-authored	several	books	for	Sams	Publishing.	Ron	taught	SQL	and
database	classes	for	Indiana	University-Purdue	University	in	Indianapolis	for	5	years.	He
is	a	retired	programmer	analyst	from	the	Indiana	Army	National	Guard.

Dedication

This	book	is	dedicated	to	my	strong	and	driven	wife,	Jill,	and	to	my	three	children	by
whom	I’m	equally	smitten	and	amazed—Daniel,	Autumn,	and	Alivia.

—Ryan

I	would	like	to	dedicate	this	book	to	my	wife,	Jackie,	for	being	understanding	and
supportive	during	the	long	hours	that	it	took	to	complete	this	book.

—Arie

Acknowledgments

Thank	you	to	all	who	have	been	supportive	and	patient	during	the	writing	of	the	six
editions	of	this	book.	This	includes,	but	is	probably	not	limited	to,	our	family,	friends,
employees,	partners,	and	random	people	in	public	who	might	sense	our	preoccupied
minds.	Thank	you	especially	to	Ron	Plew,	my	original	co-author	of	this	book	and	business
partner.	Neither	the	first	edition	of	this	book,	nor	our	company,	would	exist	without	your
contributions;	and	to	Arie	Jones	for	spearheading	this	edition	and	taking	on	the	bulk	of	the
work,	while	providing	leadership	during	the	day	at	Indy	Data	Partners.	Thanks	also	to
Marshall	Pyle	and	Jacinda	Simmerman	for	technical	edits	and	your	perspectives	to
improve	the	quality	of	this	text	for	our	readers.	And	as	always,	thanks	to	the	staff	at	Sams
Publishing	for	your	attention	to	detail	and	patience.	It	is	always	a	pleasure	working	with
you.

—Ryan

We	Want	to	Hear	from	You!

As	the	reader	of	this	book,	you	are	our	most	important	critic	and	commentator.	We	value
your	opinion	and	want	to	know	what	we’re	doing	right,	what	we	could	do	better,	what
areas	you’d	like	to	see	us	publish	in,	and	any	other	words	of	wisdom	you’re	willing	to
pass	our	way.

We	welcome	your	comments.	You	can	email	or	write	to	let	us	know	what	you	did	or	didn’t
like	about	this	book—as	well	as	what	we	can	do	to	make	our	books	better.

Please	note	that	we	cannot	help	you	with	technical	problems	related	to	the	topic	of	this
book.

When	you	write,	please	be	sure	to	include	this	book’s	title	and	author	as	well	as	your	name
and	email	address.	We	will	carefully	review	your	comments	and	share	them	with	the
authors	and	editors	who	worked	on	the	book.

Email:					consumer@samspublishing.com

Mail:							Sams	Publishing
																ATTN:	Reader	Feedback
																800	East	96th	Street
																Indianapolis,	IN	46240	USA

mailto:consumer@samspublishing.com

Reader	Services

Register	your	copy	of	Sams	Teach	Yourself	SQL	in	24	Hours,	Sixth	Edition,	at
informit.com	for	convenient	access	to	downloads,	updates,	and	corrections	as	they	become
available.	To	start	the	registration	process,	go	to	informit.com/register	and	log	in	or	create
an	account*.	Enter	the	product	ISBN,	9780672337598,	and	click	Submit.	Once	the
process	is	complete,	you	will	find	any	available	bonus	content	under	Registered	Products.

*Be	sure	to	check	the	box	that	you	would	like	to	hear	from	us	in	order	to	receive	exclusive
discounts	on	future	editions	of	this	product.

http://informit.com
http://informit.com/register

Part	I:	An	SQL	Concepts	Overview

Hour	1.	Welcome	to	the	World	of	SQL

What	You’ll	Learn	in	This	Hour:

	An	introduction	to	and	brief	history	of	SQL

	An	introduction	to	database	management	systems

	An	overview	of	some	basic	terms	and	concepts

	An	introduction	to	the	database	used	in	the	examples	and	exercises

Welcome	to	the	world	of	SQL	and	the	vast,	growing	database	technologies	of	today’s
businesses	all	over	the	world.	By	reading	this	book,	you	have	begun	accepting	the
knowledge	that	will	soon	be	required	for	survival	in	today’s	world	of	relational	databases
and	data	management.	Unfortunately,	because	it	is	first	necessary	to	provide	the
background	of	SQL	and	cover	some	preliminary	concepts	that	you	need	to	know,	the
majority	of	this	hour	is	an	overview	before	we	jump	into	actual	coding.	Bear	with	this
hour	of	the	book;	this	will	be	exciting,	and	the	“boring	stuff”	in	this	hour	definitely	pays
off.

SQL	Definition	and	History
Every	modern-day	business	has	data,	which	requires	some	organized	method	or
mechanism	for	maintaining	and	retrieving	the	data.	When	the	data	is	kept	within	a
database,	this	mechanism	is	referred	to	as	a	database	management	system	(DBMS).
Database	management	systems	have	been	around	for	years,	many	of	which	started	out	as
flat-file	systems	on	a	mainframe.	With	today’s	technologies,	the	accepted	use	of	database
management	systems	has	begun	to	flow	in	other	directions,	driven	by	the	demands	of
growing	businesses,	increased	volumes	of	corporate	data,	and	of	course,	Internet
technologies.

The	modern	wave	of	information	management	is	primarily	carried	out	through	the	use	of	a
relational	database	management	system	(RDBMS),	derived	from	the	traditional	DBMS.
Modern	databases	combined	with	client/server	and	web	technologies	are	typical
combinations	used	by	current	businesses	to	successfully	manage	their	data	and	stay
competitive	in	their	appropriate	markets.	The	trend	for	many	businesses	is	to	move	from	a
client/server	environment	to	the	Web,	where	location	is	not	a	restriction	when	users	need
access	to	important	data.	The	next	few	sections	discuss	SQL	and	the	relational	database,
the	most	common	DBMS	implemented	today.	A	good	fundamental	understanding	of	the
relational	database	and	how	to	apply	SQL	to	managing	data	in	today’s	information
technology	world	is	important	to	your	understanding	of	the	SQL	language.

What	Is	SQL?
Structured	Query	Language	(SQL)	is	the	standard	language	used	to	communicate	with	a
relational	database.	The	prototype	was	originally	developed	by	IBM	using	Dr.	E.F.	Codd’s
paper	(“A	Relational	Model	of	Data	for	Large	Shared	Data	Banks”)	as	a	model.	In	1979,
not	long	after	IBM’s	prototype	was	created,	the	first	SQL	product,	ORACLE,	was	released
by	Relational	Software,	Incorporated	(which	was	later	renamed	Oracle	Corporation).
Today,	it	is	one	of	the	distinguished	leaders	in	relational	database	technologies.

If	you	travel	to	a	foreign	country,	you	might	be	required	to	know	that	country’s	language
to	get	around.	For	example,	you	might	have	trouble	ordering	from	a	menu	via	your	native
tongue	if	the	waiter	speaks	only	his	country’s	language.	Look	at	a	database	as	a	foreign
land	in	which	you	seek	information.	SQL	is	the	language	you	use	to	express	your	needs	to
the	database.	Just	as	you	would	order	a	meal	from	a	menu	in	another	country,	you	can
request	specific	information	from	within	a	database	in	the	form	of	a	query	using	SQL.

Note:	Communicating	with	Databases

Think	about	when	you	access	your	favorite	online	store	to	order	a	book,	an	article
of	clothing,	or	just	about	any	other	product.	When	you	point	and	click	to	navigate
the	product	catalog,	enter	search	criteria,	and	place	items	in	your	shopping	cart,
SQL	code	is	often	executed	behind	the	scenes	to	facilitate	a	database	connection,
while	telling	the	database	what	data	you	want	to	see	and	how	you	want	to	see	it.

What	Is	ANSI	SQL?
The	American	National	Standards	Institute	(ANSI)	is	an	organization	that	approves	certain
standards	in	many	different	industries.	SQL	has	been	deemed	the	standard	language	in
relational	database	communication,	originally	approved	in	1986	based	on	IBM’s
implementation.	In	1987,	the	ANSI	SQL	standard	was	accepted	as	the	international
standard	by	the	International	Standards	Organization	(ISO).	The	standard	was	revised
again	in	1992	(SQL-92)	and	again	in	1999	(SQL-99).	The	newest	standard	is	now	called
SQL-2011,	which	was	officially	adopted	in	December,	2011.

The	Current	Standard:	SQL-2011
SQL-2011	is	the	current	standard,	with	SQL-2008	being	the	previous	standard.	The
current	SQL	standard	has	nine	interrelated	documents,	and	other	documents	might	be
added	in	the	near	future	as	the	standard	is	expanded	to	encompass	newly	emerging
technology	needs.	The	nine	interrelated	parts	follow:

	Part	1,	“SQL/Framework”—Specifies	the	general	requirements	for	conformance
and	defines	the	fundamental	concepts	of	SQL.

	Part	2,	“SQL/Foundation”—Defines	the	syntax	and	operations	of	SQL.

	Part	3,	“SQL/Call-Level	Interface”—Defines	the	interface	for	application
programming	to	SQL.

	Part	4,	“SQL/Persistent	Stored	Modules”—Defines	the	control	structures	that

then	define	SQL	routines.	Part	4	also	defines	the	modules	that	contain	SQL	routines.

	Part	9,	“Management	of	External	Data	(SQL/MED)”—Defines	extensions	to
SQL	to	support	the	management	of	external	data	through	the	use	of	data	wrappers
and	datalink	types.

	Part	10,	“Object	Language	Bindings”—Defines	extensions	to	the	SQL	language
to	support	the	embedding	of	SQL	statements	into	programs	written	in	Java.

	Part	11,	“Information	and	Definition	Schemas”—Defines	specifications	for	the
Information	Schema	and	Definition	Schema,	which	provide	structural	and	security
information	related	to	SQL	data.

	Part	13,	“Routines	and	Types	Using	the	Java	Programming
Language”—Defines	the	capability	to	call	Java	static	routines	and	classes	as	SQL-
invoked	routines.

	Part	14,	“XML-Related	Specifications”—Defines	ways	in	which	SQL	can	be	used
with	XML.

One	of	the	main	enhancements	to	the	current	standard	with	SQL-2011	is	temporal
database	support.	Temporal	database	support	is	a	native	feature	that	a	SQL
implementation	such	as	Oracle	provides	that	allows	data	to	be	queried	and	changed	within
the	database	based	on	a	specific	time	period	within	which	certain	data	exists.	There	are
various	levels	of	compliance	to	temporal	databases,	as	well	as	other	standard	features,
with	which	database	implementations	comply.	If	you	work	with	a	database
implementation	that	does	not	fully	comply	with	any	given	standard,	there	are	normally
workarounds,	which	involve	business	logic	that	is	incorporated	into	the	database	design.
With	any	standard	comes	numerous,	obvious	advantages,	as	well	as	some	disadvantages.
Foremost,	a	standard	steers	vendors	in	the	appropriate	industry	direction	for	development.
For	SQL,	a	standard	provides	a	basic	skeleton	of	necessary	fundamentals,	which,	as	an
end	result,	enables	consistency	between	various	implementations	and	better	serves
increased	portability	(not	only	for	database	programs,	but	also	databases	in	general	and
individuals	who	manage	databases).

Some	might	argue	that	a	standard	is	not	so	good,	limiting	the	flexibility	and	possible
capabilities	of	a	particular	implementation.	However,	most	vendors	that	comply	with	the
standard	have	added	product-specific	enhancements	to	standard	SQL	to	fill	in	these	gaps.

A	standard	is	good,	considering	the	advantages	and	disadvantages.	The	expected	standard
demands	features	that	should	be	available	in	any	complete	SQL	implementation	and
outlines	basic	concepts	that	not	only	force	consistency	between	all	competitive	SQL
implementations,	but	also	increase	the	value	of	a	SQL	programmer.

A	SQL	implementation	is	a	particular	vendor’s	SQL	product,	or	RDBMS.	It	is	important	to
note,	as	you	will	read	numerous	times	in	this	book,	that	implementations	of	SQL	vary
widely.	No	one	implementation	follows	the	standard	completely;	although,	some	are
mostly	ANSI-compliant.	It	is	also	important	to	note	that	in	recent	years	the	list	of
functionality	within	the	ANSI	standard	that	must	be	adhered	to	in	order	to	be	considered
compliant	has	not	changed	dramatically.	Hence,	when	new	versions	of	RDBMS	are
released,	they	will	most	likely	claim	ANSI	SQL	compliance.

What	Is	a	Database?
In	simple	terms,	a	database	is	a	collection	of	data.	Some	like	to	think	of	a	database	as	an
organized	mechanism	that	has	the	capability	of	storing	information,	through	which	a	user
can	retrieve	stored	information	in	an	effective	and	efficient	manner.

People	use	databases	every	day	without	realizing	it.	A	phone	book	is	a	database.	The	data
contained	consists	of	individuals’	names,	addresses,	and	telephone	numbers.	The	listings
are	alphabetized	or	indexed,	which	enables	the	user	to	reference	a	particular	local	resident
with	ease.	Ultimately,	this	data	is	stored	in	a	database	somewhere	on	a	computer.	After	all,
each	page	of	a	phone	book	is	not	manually	typed	each	year	a	new	edition	is	released.

The	database	has	to	be	maintained.	As	people	move	to	different	cities	or	states,	entries
might	have	to	be	added	or	removed	from	the	phone	book.	Likewise,	entries	have	to	be
modified	for	people	changing	names,	addresses,	telephone	numbers,	and	so	on.	Figure	1.1
illustrates	a	simple	database.

FIGURE	1.1	The	database

The	Relational	Database
A	relational	database	is	a	database	divided	into	logical	units	called	tables,	where	tables
are	related	to	one	another	within	the	database.	A	relational	database	allows	data	to	be
broken	down	into	logical,	smaller,	manageable	units,	enabling	easier	maintenance	and
providing	more	optimal	database	performance	according	to	the	level	of	organization.	In
Figure	1.2,	you	can	see	that	tables	are	related	to	one	another	through	a	common	key	(data
value)	in	a	relational	database.

FIGURE	1.2	The	relational	database

Again,	tables	are	related	in	a	relational	database,	allowing	adequate	data	to	be	retrieved	in
a	single	query.	(Although	the	desired	data	may	exist	in	more	than	one	table.)	By	having
common	keys,	or	fields,	among	relational	database	tables,	data	from	multiple	tables	can	be

joined	to	form	one	large	set	of	data.	As	you	venture	deeper	into	this	book,	you	see	more	of
a	relational	database’s	advantages,	including	overall	performance	and	easy	data	access.

Client/Server	Technology
In	the	past,	the	computer	industry	was	predominately	ruled	by	mainframe	computers—
large,	powerful	systems	capable	of	high	storage	capacity	and	high	data	processing
capabilities.	Users	communicated	with	the	mainframe	through	dumb	terminals—terminals
that	did	not	think	on	their	own	but	relied	solely	on	the	mainframe’s	CPU,	storage,	and
memory.	Each	terminal	had	a	data	line	attached	to	the	mainframe.	The	mainframe
environment	definitely	served	its	purpose	and	does	today	in	many	businesses,	but	a	greater
technology	was	soon	to	be	introduced:	the	client/server	model.

In	the	client/server	system,	the	main	computer,	called	the	server,	is	accessible	from	a
network—typically	a	local	area	network	(LAN)	or	a	wide	area	network	(WAN).	The	server
is	normally	accessed	by	personal	computers	(PCs)	or	by	other	servers,	instead	of	dumb
terminals.	Each	PC,	called	a	client,	is	provided	access	to	the	network,	allowing
communication	between	the	client	and	the	server,	thus	explaining	the	name	client/server.
The	main	difference	between	client/server	and	mainframe	environments	is	that	the	user’s
PC	in	a	client/server	environment	can	think	on	its	own	and	run	its	own	processes	using	its
own	CPU	and	memory,	but	is	readily	accessible	to	a	server	computer	through	a	network.
In	most	cases,	a	client/server	system	is	much	more	flexible	for	today’s	overall	business
needs	and	is	preferred.

Modern	database	systems	reside	on	various	types	of	computer	systems	with	various
operating	systems.	The	most	common	types	of	operating	systems	are	Windows-based
systems,	Linux,	and	command-line	systems	such	as	UNIX.	Databases	reside	mainly	in
client/server	and	web	environments.	A	lack	of	training	and	experience	is	the	main	reason
for	failed	implementations	of	database	systems.	Nevertheless,	an	understanding	of	the
client/server	model	and	web-based	systems,	which	will	be	explained	in	the	next	section,	is
imperative	with	the	rising	(and	sometimes	unreasonable)	demands	placed	on	today’s
businesses	as	well	as	the	development	of	Internet	technologies	and	network	computing.
Figure	1.3	illustrates	the	concept	of	client/server	technology.

FIGURE	1.3	The	client/server	model

Web-Based	Database	Systems
Business	information	systems	have	largely	moved	toward	web	integration.	Databases	are
now	accessible	through	the	Internet,	meaning	that	customers’	access	to	an	organization’s
information	is	enabled	through	an	Internet	browser	such	as	Internet	Explorer,	Microsoft
Edge,	or	Firefox.	Customers	(users	of	data)	can	order	merchandise,	check	inventories,
check	the	status	of	orders,	make	administrative	changes	to	accounts,	transfer	money	from
one	account	to	another,	and	so	forth.

A	customer	simply	invokes	an	Internet	browser,	goes	to	the	organization’s	website,	logs	in
(if	required	by	the	organization),	and	uses	an	application	built	in	to	the	organization’s	web
page	to	access	data.	Most	organizations	require	users	to	register	with	them	and	issue	a
login	and	password	to	the	customer.

Of	course,	many	things	occur	behind	the	scenes	when	a	database	is	accessed	via	a	web
browser.	SQL,	for	instance,	can	be	executed	by	the	web	application.	This	executed	SQL
accesses	the	organization’s	database,	returns	data	to	the	web	server,	and	then	returns	that
data	to	the	customer’s	Internet	browser.

The	basic	structure	of	a	web-based	database	system	is	similar	to	that	of	a	client/server
system	from	a	user’s	standpoint	(refer	to	Figure	1.3).	Each	user	has	a	client	machine,
which	has	a	connection	to	the	Internet	and	contains	a	web	browser.	The	network	in	Figure
1.3	(for	a	web-based	database)	just	happens	to	be	the	Internet,	as	opposed	to	a	local
network.	For	the	most	part,	a	client	is	still	accessing	a	server	for	information.	It	doesn’t
matter	that	the	server	might	exist	in	another	state	or	even	another	country.	The	main	point
of	web-based	database	systems	is	to	expand	the	potential	customer	base	of	a	database
system	that	knows	no	physical	location	bounds,	thus	increasing	data	availability	and	an
organization’s	customer	base.

Popular	Database	Vendors
Some	of	the	most	predominant	database	vendors	include	Oracle,	Microsoft,	Informix,
Sybase,	and	IBM.	These	vendors	distribute	various	versions	of	the	relational	database	for
a	base	license	fee	and	are	normally	referred	to	as	closed	source.	Many	other	vendors
supply	an	open-source	version	of	a	SQL	database	(relational	database).	Some	of	these
vendors	include	MySQL,	PostgresSQL,	and	SAP.	Although	many	more	vendors	exist	than
those	mentioned,	this	list	includes	names	that	you	might	have	recognized	on	the
bookshelf,	in	the	newspaper,	in	magazines,	on	the	stock	market,	or	on	the	World	Wide
Web.

Each	vendor-specific	implementation	of	SQL	is	unique	in	both	features	and	nature.	A
database	server	is	a	product—like	any	other	product	on	the	market—manufactured	by	a
widespread	number	of	vendors.	It	is	to	the	benefit	of	the	vendor	to	ensure	that	its
implementation	is	compliant	with	the	current	ANSI	standard	for	portability	and	user
convenience.	For	instance,	if	a	company	is	migrating	from	one	database	server	to	another,
it	would	be	rather	discouraging	for	the	database	users	to	have	to	learn	another	language	to
maintain	functionality	with	the	new	system.

With	each	vendor’s	SQL	implementation,	however,	you	find	that	there	are	enhancements
that	serve	the	purpose	for	each	database	server.	These	enhancements,	or	extensions,	are

additional	commands	and	options	that	are	simply	a	bonus	to	the	standard	SQL	package
and	available	with	a	specific	implementation.

SQL	Sessions
A	SQL	session	is	an	occurrence	of	a	user	interacting	with	a	relational	database	through	the
use	of	SQL	commands.	When	a	user	initially	connects	to	the	database,	a	session	is
established.	Within	the	scope	of	a	SQL	session,	valid	SQL	commands	can	be	entered	to
query	the	database,	manipulate	data	in	the	database,	and	define	database	structures,	such
as	tables.	A	session	may	be	invoked	by	either	direct	connection	to	the	database	or	through
a	front-end	application.	In	both	cases,	sessions	are	normally	established	by	a	user	at	a
terminal	or	workstation	that	communicates	through	a	network	with	the	computer	that	hosts
the	database.

CONNECT
When	a	user	connects	to	a	database,	the	SQL	session	is	initialized.	The	CONNECT
command	is	used	to	establish	a	database	connection.	With	the	CONNECT	command,	you
can	either	invoke	a	connection	or	change	connections	to	the	database.	For	example,	if	you
connect	as	USER1,	you	can	use	the	CONNECT	command	to	connect	to	the	database	as
USER2.	When	this	happens,	the	SQL	session	for	USER1	is	implicitly	disconnected.	You
would	normally	use	the	following:

CONNECT	user@database

When	you	attempt	to	connect	to	a	database,	you	are	automatically	prompted	for	a
password	that	is	associated	with	your	current	username.	The	username	is	used	to
authenticate	you	to	the	database,	and	the	password	is	the	key	that	allows	entrance.

DISCONNECT	and	EXIT
When	a	user	disconnects	from	a	database,	the	SQL	session	is	terminated.	The
DISCONNECT	command	is	used	to	disconnect	a	user	from	the	database.	When	you
disconnect	from	the	database,	the	software	you	use	might	still	appear	to	communicate	with
the	database,	but	you	have	lost	your	connection.	When	you	use	EXIT	to	leave	the
database,	your	SQL	session	is	terminated,	and	the	software	that	you	use	to	access	the
database	is	normally	closed.

DISCONNECT

Types	of	SQL	Commands
The	following	sections	discuss	the	basic	categories	of	commands	used	in	SQL	to	perform
various	functions.	These	functions	include	building	database	objects,	manipulating
objects,	populating	database	tables	with	data,	updating	existing	data	in	tables,	deleting
data,	performing	database	queries,	controlling	database	access,	and	overall	database
administration.

The	main	categories	are

	Data	Definition	Language	(DDL)

	Data	Manipulation	Language	(DML)

	Data	Query	Language	(DQL)

	Data	Control	Language	(DCL)

	Data	administration	commands

	Transactional	control	commands

Defining	Database	Structures
Data	Definition	Language	(DDL)	is	the	part	of	SQL	that	enables	a	database	user	to	create
and	restructure	database	objects,	such	as	the	creation	or	the	deletion	of	a	table.

Some	of	the	most	fundamental	DDL	commands	discussed	during	the	following	hours
include

	CREATE	TABLE

	ALTER	TABLE

	DROP	TABLE

	CREATE	INDEX

	ALTER	INDEX

	DROP	INDEX

	CREATE	VIEW

	DROP	VIEW

These	commands	are	discussed	in	detail	during	Hour	3,	“Managing	Database	Objects,”
Hour	17,	“Improving	Database	Performance,”	and	Hour	20,	“Creating	and	Using	Views
and	Synonyms.”

Manipulating	Data
Data	Manipulation	Language	(DML)	is	the	part	of	SQL	used	to	manipulate	data	within
objects	of	a	relational	database.

The	three	basic	DML	commands	are

	INSERT

	UPDATE

	DELETE

These	commands	are	discussed	in	detail	during	Hour	5,	“Manipulating	Data.”

Selecting	Data
Though	composed	of	only	one	command,	Data	Query	Language	(DQL)	is	the	most
concentrated	focus	of	SQL	for	modern	relational	database	users.	The	base	command	is
SELECT.

This	command,	accompanied	by	many	options	and	clauses,	composes	queries	against	a
relational	database.	A	query	is	an	inquiry	to	the	database	for	information.	A	query	is
usually	issued	to	the	database	through	an	application	interface	or	via	a	command-line
prompt.	You	can	easily	create	queries,	from	simple	to	complex,	from	vague	to	specific.

The	SELECT	command	is	discussed	in	exhilarating	detail	during	Hours	7	through	16.

Data	Control	Language
Data	control	commands	in	SQL	enable	you	to	control	access	to	data	within	the	database.
These	Data	Control	Language	(DCL)	commands	are	normally	used	to	create	objects
related	to	user	access	and	also	control	the	distribution	of	privileges	among	users.	Some
data	control	commands	follow:

	ALTER	PASSWORD

	GRANT

	REVOKE

	CREATE	SYNONYM

You	will	find	that	these	commands	are	often	grouped	with	other	commands	and	might
appear	in	a	number	of	lessons	throughout	this	book.

Data	Administration	Commands
Data	administration	commands	enable	the	user	to	perform	audits	and	perform	analyses	on
operations	within	the	database.	They	can	also	be	used	to	help	analyze	system	performance.
Two	general	data	administration	commands	follow:

	START	AUDIT

	STOP	AUDIT

Do	not	get	data	administration	confused	with	database	administration.	Database
administration	is	the	overall	administration	of	a	database,	which	envelops	the	use	of	all
levels	of	commands.	Data	administration	is	much	more	specific	to	each	SQL
implementation	than	are	those	core	commands	of	the	SQL	language.

Transactional	Control	Commands
In	addition	to	the	previously	introduced	categories	of	commands,	there	are	commands	that
enable	the	user	to	manage	database	transactions:

	COMMIT—Saves	database	transactions

	ROLLBACK—Undoes	database	transactions

	SAVEPOINT—Creates	points	within	groups	of	transactions	in	which	to	ROLLBACK

	SET	TRANSACTION—Places	a	name	on	a	transaction

Transactional	commands	are	discussed	extensively	during	Hour	6,	“Managing	Database
Transactions.”

Canary	Airlines:	The	Database	Used	in	This	Book
Before	continuing	with	your	journey	through	SQL	fundamentals,	the	next	step	is
introducing	the	tables	and	data	that	you	use	throughout	the	course	of	instruction	for	the
next	23	one-hour	lessons.	This	book	uses	an	example	database	for	a	fictitious	organization
called	Canary	Airlines.	Example	data	has	been	generated	to	create	real-world	scenarios	for
examples	and	exercises	in	this	book.	The	following	sections	provide	an	overview	of	the
specific	tables	(the	database)	used,	their	relationship	to	one	another,	their	structure,	and
examples	of	the	data	contained.

Figure	1.4	reveals	the	relationship	between	the	tables	that	you	use	for	examples,	quiz
questions,	and	exercises	in	this	book.	Each	table	is	identified	by	the	table	name	as	well	as
each	residing	field	in	the	table.	Follow	the	mapping	lines	to	compare	the	specific	tables’
relationship	through	a	common	field,	in	most	cases	referred	to	as	the	primary	key
(discussed	in	Hour	3).

FIGURE	1.4	Table	relationships	for	this	book

Canary	Airlines,	like	other	airlines,	is	dedicated	to	getting	flights	in	and	out	efficiently,
and	providing	passengers	(customers	and	end	users)	with	a	safe	method	of	travel	to	and
from	their	destinations.	Following	is	an	overview	of	some	of	the	basic	business	rules	of
Canary	Airlines,	as	well	as	the	relationship	between	the	database	tables	in	Figure	1.4:

	Canary	Airlines	manages	flights	for	its	passengers	(customers).

	Canary	Airlines	has	passengers,	aircraft,	flights,	and	locations	served.

	Passengers	can	select	flights.

	Flights	have	various	statuses.

	Each	flight	is	associated	with	an	itinerary.

	Each	flight	is	associated	with	a	specific	aircraft.

	Flights	are	associated	with	routes	that	involve	destinations	to	which	passengers	want
to	travel	to	or	from,	in	various	airports	and	in	various	countries.

Table-Naming	Standards
Table-naming	standards,	as	well	as	any	standard	within	a	business,	are	critical	to
maintaining	control.	After	studying	the	tables	and	data	in	the	previous	sections,	you
probably	noticed	that	each	table’s	suffix	is	_TBL.	This	is	a	naming	standard	selected	for
use,	such	as	what’s	been	used	at	various	client	sites.	The	_TBL	suffix	simply	tells	you	that
the	object	is	a	table;	there	are	many	different	types	of	objects	in	a	relational	database.	For
example,	in	later	hours	you	see	that	the	suffix	_INX	is	used	to	identify	indexes	on	tables.
Naming	standards	exist	almost	exclusively	for	overall	organization	and	assist	immensely
in	the	administration	of	any	relational	database.	Remember,	the	use	of	a	suffix	is	not
mandatory	when	naming	database	objects.	A	naming	convention	is	merely	used	to	provide
some	order	when	creating	objects.	You	may	choose	to	utilize	whatever	standard	you	want.

Note:	Naming	Standards

You	should	not	only	adhere	to	the	object-naming	syntax	of	any	SQL
implementation,	but	also	follow	local	business	rules	and	create	names	that	are
descriptive	and	related	to	the	data	groupings	for	the	business.	Consistent	naming
standards	make	it	easier	to	manage	databases	with	SQL.

A	Look	at	Sample	Data
This	section	offers	a	sample	of	the	data	contained	in	the	Passengers	table	used	in	this
book.	Take	a	few	minutes	to	think	about	passengers	as	you	look	at	the	first	three	records,
or	rows,	from	the	following	Passengers	table.	Also,	try	to	imagine	how	passengers	might
be	related	to	flights	and	itineraries,	and	all	the	variations	that	might	occur	within	the	data.
Click	here	to	view	code	image

Passengers

PassengerID						FirstName								LastName									BirthDate								CountryCode

										1						Adeline										Wogan												1988-09-24								CA
										2						Stephnie									Mastrelli								1966-03-01								US
										3						Amina												Fold													1982-05-22								GB

A	Closer	Look	at	What	Comprises	a	Table

The	storage	and	maintenance	of	valuable	data	is	the	reason	for	any	database’s	existence.
You	have	just	viewed	the	data	that	is	used	to	explain	SQL	concepts	in	this	book.	The
following	sections	take	a	closer	look	at	the	elements	within	a	table.	Remember,	a	table	is
the	most	common	and	simple	form	of	data	storage.

Fields

Every	table	is	broken	into	smaller	entities	called	fields.	A	field	is	a	column	in	a	table	that
is	designed	to	maintain	specific	information	about	every	record	in	the	table.	The	fields	in
the	Passengers	table	consist	of	PassengerID,	FirstName,	LastName,
BirthDate,	and	CountryCode.	These	fields	categorize	the	specific	information	that
is	maintained	in	a	given	table.

Records,	or	Rows	of	Data

A	record,	also	called	a	row	of	data,	is	each	horizontal	entry	that	exists	in	a	table.	Looking
at	the	last	table,	Passengers,	consider	the	following	first	record	in	that	table:
Click	here	to	view	code	image

1							Adeline						Wogan					1988-09-24					CA

The	record	is	obviously	composed	of	a	passenger	identification,	passenger	last	name,
passenger	first	name,	date	of	birth,	and	country	code.	For	every	distinct	passenger,	there
should	be	a	corresponding	record	in	the	Passengers	table.

A	row	of	data	is	an	entire	record	in	a	relational	database	table.

Columns

A	column	is	a	vertical	entity	in	a	table	that	contains	all	information	associated	with	a
specific	field	in	a	table.	For	example,	a	column	in	the	Passengers	table	having	to	do
with	the	passenger’s	last	name	consists	of	the	following:

Wogan
Mastrelli
Fold

This	column	is	based	on	the	field	LastName,	the	passenger’s	last	name.	A	column	pulls
information	about	a	certain	field	from	every	record	within	a	table.

Primary	Keys

A	primary	key	is	a	column	that	makes	each	row	of	data	in	the	table	unique	in	a	relational
database.	The	primary	key	in	the	Passengers	table	is	PassengerID,	which	is
typically	initialized	during	the	table	creation	process.	The	nature	of	the	primary	key	is	to
ensure	that	all	product	identifications	are	unique,	so	each	record	in	the	Passengers
table	has	its	own	PassengerID.	Primary	keys	alleviate	the	possibility	of	a	duplicate
record	in	a	table	and	are	used	in	other	ways,	which	you	will	read	about	in	Hour	3.

NULL	Values

NULL	is	the	term	used	to	represent	a	missing	value.	A	NULL	value	in	a	table	is	a	value	in	a
field	that	appears	to	be	blank.	A	field	with	a	NULL	value	is	a	field	with	no	value.	It	is
important	to	understand	that	a	NULL	value	is	different	from	a	zero	value	or	a	field	that
contains	spaces.	A	field	with	a	NULL	value	is	one	that	has	been	left	blank	during	record
creation.	For	example,	a	table	containing	a	column	called	MiddleName	might	allow	null
or	missing	values	because	every	person	does	not	necessarily	have	a	middle	name.	Records
in	tables	that	do	not	have	an	entry	for	a	particular	column	signify	a	NULL	value.

Additional	table	elements	are	discussed	in	detail	during	the	next	two	hours.

Examples	and	Exercises
Many	exercises	in	this	book	use	the	MySQL,	Microsoft	SQL	Server,	and	Oracle	databases
to	generate	the	examples.	We	decided	to	concentrate	on	these	three	database
implementations	because	they	allow	freely	distributed	versions	of	their	database	to	be
available.	Also,	these	are	the	three	most	popular	relational	database	implementations.	This
enables	you	to	select	an	implementation	of	your	choice,	install	it,	and	follow	along	with
the	exercises	in	the	book.	Note	that	because	these	databases	are	not	100%-compliant	to
SQL-2011,	the	exercises	might	present	slight	variations	or	nonadoption	of	the	ANSI
standard.	However,	by	learning	the	basics	of	the	ANSI	standard,	you	can	in	most	cases
easily	translate	your	skills	between	different	database	implementations.

Summary
You	have	been	introduced	to	the	standard	language	of	SQL	and	have	been	given	a	brief
history	and	thumbnail	of	how	the	standard	has	evolved	over	the	past	several	years.
Database	systems	and	current	technologies	were	also	discussed,	including	the	relational
database,	client/server	systems,	and	web-based	database	systems,	all	of	which	are	vital	to
your	understanding	of	SQL.	The	main	SQL	language	components	and	the	fact	that	there
are	numerous	players	in	the	relational	database	market,	and	likewise,	many	different
flavors	of	SQL,	were	discussed.	Despite	ANSI	SQL	variations,	most	vendors	do	comply	to
some	extent	with	the	current	standard	(SQL-2011),	rendering	consistency	across	the	board
and	forcing	the	development	of	portable	SQL	applications.

The	database	that	is	used	during	your	course	of	study	was	also	introduced.	The	database,
as	you	have	seen	it	so	far,	has	consisted	of	a	few	tables	(which	are	related	to	one	another)
and	the	data	that	each	table	contains	at	this	point	(at	the	end	of	Hour	1).	You	should	have
acquired	some	overall	background	knowledge	of	the	fundamentals	of	SQL	and	should
understand	the	concept	of	a	modern	database.	After	a	few	refreshers	in	the	workshop	for
this	hour,	you	should	feel	confident	about	continuing	to	the	next	hour.

Q&A
Q.	If	I	learn	SQL,	can	I	use	any	of	the	implementations	that	use	SQL?

A.	Yes,	you	can	communicate	with	a	database	whose	implementation	is	ANSI	SQL-
compliant.	If	an	implementation	is	not	completely	compliant,	you	should	pick	it	up

quickly	with	some	adjustments.

Q.	In	a	client/server	environment,	is	the	personal	computer	the	client	or	the
server?

A.	The	personal	computer	is	known	as	the	client;	although	a	server	can	also	serve	as	a
client.

Q.	Is	there	an	overall	standard	for	naming	conventions	for	database	objects	such
as	tables	and	columns?

A.	Although	not	necessary,	a	naming	convention	for	database	objects	and	data	should
be	established	within	each	organization	and	should	be	used	consistently.	Consistency
in	naming	conventions	make	data	more	easily	identifiable	and	data	easier	to	manage
in	general.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	What	does	the	acronym	SQL	stand	for?

2.	What	are	the	six	main	categories	of	SQL	commands?

3.	What	are	the	four	transactional	control	commands?

4.	What	is	the	main	difference	between	client/server	and	web	technologies	as	they
relate	to	database	access?

5.	If	a	field	is	defined	as	NULL,	does	something	have	to	be	entered	into	that	field?

Exercises
1.	Identify	the	categories	in	which	the	following	SQL	commands	fall:

CREATE	TABLE
DELETE
SELECT
INSERT
ALTER	TABLE
UPDATE

2.	Study	the	following	tables,	and	pick	out	the	column	that	would	be	a	good	candidate
for	the	primary	key:
AIRPORTS
EMPLOYEES
PASSENGERS

AIRCRAFT

3.	Refer	to	Appendix	B,	“Installing	Oracle	and	Microsoft	SQL.”	Download	and	install
one	of	the	three	database	implementations	on	your	computer	to	prepare	for	hands-on
exercises	in	the	following	hours	of	instruction.

Part	II:	Building	Your	Database

Hour	2.	Defining	Data	Structures

What	You’ll	Learn	in	This	Hour:

	A	look	at	the	underlying	data	of	a	table

	An	introduction	to	the	basic	data	types

	Instruction	on	the	use	of	various	data	types

	Examples	depicting	differences	between	data	types

In	this	second	hour,	you	learn	more	about	the	data	you	viewed	at	the	end	of	Hour	1,
“Welcome	to	the	World	of	SQL.”	You	learn	the	characteristics	of	the	data	and	how	such
data	is	stored	in	a	relational	database.	There	are	several	data	types,	as	you’ll	soon	discover.

What	Is	Data?
Data	is	a	collection	of	information	stored	in	a	database	as	one	of	several	different	data
types.	Data	includes	names,	numbers,	dollar	amounts,	text,	graphics,	decimals,	figures,
calculations,	summarization,	and	just	about	anything	else	you	can	possibly	imagine.	Data
can	be	stored	in	uppercase,	lowercase,	or	mixed	case.	Data	can	be	manipulated	or
changed;	most	data	does	not	remain	static	for	its	lifetime.

Data	types	are	used	to	provide	rules	for	data	for	particular	columns.	A	data	type	deals	with
the	way	values	are	stored	in	a	column	for	the	length	allocated	for	a	column	and	whether
values	such	as	alphanumeric,	numeric,	and	date	and	time	data	are	allowed.	There	is	a	data
type	for	every	possible	bit	or	combination	of	data	that	can	be	stored	in	a	particular
database.	These	data	types	store	data	such	as	characters,	numbers,	date	and	time,	images,
and	other	binary	data.	More	specifically,	the	data	might	consist	of	names,	descriptions,
numbers,	calculations,	images,	image	descriptions,	documents,	and	so	forth.

The	data	is	the	purpose	of	any	database	and	must	be	protected.	The	protector	of	the	data	is
normally	the	database	administrator	(DBA),	although	it	is	every	database	user’s
responsibility	to	ensure	that	measures	are	taken	to	protect	data.	Data	security	is	discussed
in	depth	in	Hour	18,	“Managing	Database	Users,”	and	Hour	19,	“Managing	Database
Security.”

Basic	Data	Types
The	following	sections	discuss	the	basic	data	types	supported	by	ANSI	SQL.	Data	types
are	characteristics	of	the	data	itself,	whose	attributes	are	placed	on	fields	within	a	table.
For	example,	you	can	specify	that	a	field	must	contain	numeric	values,	disallowing	the
entering	of	alphanumeric	strings.	After	all,	you	would	not	want	to	enter	alphabetic
characters	in	a	field	for	a	dollar	amount.	Defining	each	field	in	the	database	with	a	data
type	eliminates	much	of	the	incorrect	data	found	in	a	database	due	to	data	entry	errors.
Field	definition	(data	type	definition)	is	a	form	of	data	validation	that	controls	the	type	of
data	that	may	be	entered	into	each	given	field.

Depending	on	your	implementation	of	relational	database	management	system	(RDBMS),

certain	data	types	can	be	converted	automatically	to	other	data	types	depending	upon	their
format.	This	type	of	conversion	in	known	as	an	implicit	conversion,	which	means	that	the
database	handles	the	conversion	for	you.	An	example	of	this	is	taking	a	numeric	value	of
1000.92	from	a	numeric	field	and	inputting	it	into	a	string	field.	Other	data	types	cannot
be	converted	implicitly	by	the	host	RDBMS	and	therefore	must	undergo	an	explicit
conversion.	This	usually	involves	the	use	of	a	SQL	function,	such	as	CAST	or	CONVERT.
In	the	following	Oracle	example,	the	current	system	date	is	retrieved	from	the	database	in
the	default	date	format,	which	is	a	date	data	type:
Click	here	to	view	code	image

SELECT	CAST(‘12/27/1974’	AS	DATETIME)	AS	MYDATE

SQL>	SELECT	SYSDATE	FROM	DUAL;

SYSDATE
–––
08-SEP-15

If	we	want	to	change,	or	display	the	date	in	a	format	other	than	the	default	data	type,	we
can	apply	the	Oracle	TO_CHAR	function	to	display	the	date	as	a	character	string,	in	the
next	example	retrieving	only	the	current	month:
Click	here	to	view	code	image

SQL>	SELECT	TO_CHAR(SYSDATE,	‘Month’)	MONTH
		2		FROM	DUAL;

MONTH
––––––––––––
September

The	basic	data	types,	as	with	most	other	languages,	are:

	String	types

	Numeric	types

	Date	and	time	types

Tip:	SQL	Data	Types

Every	implementation	of	SQL	has	its	own	specific	set	of	data	types.	The	use	of
implementation-specific	data	types	is	necessary	to	support	the	philosophy	of	each
implementation	on	how	to	handle	the	storage	of	data.	However,	the	basics	are	the
same	among	all	implementations.

Fixed-Length	Strings
Constant	characters,	those	strings	that	always	have	the	same	length,	are	stored	using	a
fixed-length	data	type.	The	following	is	the	standard	for	a	SQL	fixed-length	character:

CHARACTER(n)

n	represents	a	number	identifying	the	allocated	or	maximum	length	of	the	particular	field
with	this	definition.

Some	implementations	of	SQL	use	the	CHAR	data	type	to	store	fixed-length	data.	You	can
store	alphanumeric	data	in	this	data	type.	An	example	of	a	constant	length	data	type	would
be	for	a	state	abbreviation	because	all	state	abbreviations	are	two	characters.

Spaces	are	normally	used	to	fill	extra	spots	when	using	a	fixed-length	data	type;	if	a	field’s
length	were	set	to	10	and	data	entered	filled	only	5	places,	the	remaining	5	spaces	would
be	recorded	as	spaces.	The	padding	of	spaces	ensures	that	each	value	in	a	field	is	a	fixed
length.

Caution:	Fixed-Length	Data	Types

Be	careful	not	to	use	a	fixed-length	data	type	for	fields	that	might	contain	varying-
length	values,	such	as	an	individual’s	name.	If	you	use	the	fixed-length	data	type
inappropriately,	you	eventually	encounter	problems	such	as	the	waste	of	available
space	and	the	inability	to	make	accurate	comparisons	between	data.

Always	use	the	varying-length	data	type	for	nonconstant	character	strings	to	save
database	space.

Varying-Length	Strings
SQL	supports	the	use	of	varying-length	strings,	strings	whose	length	is	not	constant	for	all
data.	The	following	is	the	standard	for	a	SQL	varying-length	character:

CHARACTER	VARYING(n)

n	represents	a	number	identifying	the	allocated	or	maximum	length	of	the	particular	field
with	this	definition.

Common	data	types	for	variable-length	character	values	are	the	VARCHAR,	VARBINARY,
and	VARCHAR2	data	types.	VARCHAR	is	the	ANSI	standard,	which	Microsoft	SQL	Server
and	MySQL	use;	Oracle	uses	both	VARCHAR	and	VARCHAR2.	The	data	stored	in	a
character-defined	column	can	be	alphanumeric,	which	means	that	the	data	value	may
contain	numeric	characters.	VARBINARY	is	similar	to	VARCHAR	and	VARCHAR2	except
that	it	contains	a	variable	length	of	bytes.	Normally,	you	would	use	a	type	such	as	this	to
store	some	kind	of	digital	data	such	as	an	image	file.

Remember	that	fixed-length	data	types	typically	pad	spaces	to	fill	in	allocated	places	not
used	by	the	field.	The	varying-length	data	type	does	not	work	this	way.	For	instance,	if	the
allocated	length	of	a	varying-length	field	is	10,	and	a	string	of	5	characters	is	entered,	the
total	length	of	that	particular	value	would	be	only	5.	Spaces	are	not	used	to	fill	unused
places	in	a	column.

Large	Object	Types
Some	variable-length	data	types	need	to	hold	longer	lengths	of	data	than	what	is
traditionally	reserved	for	a	VARCHAR	field.	The	BLOB	and	TEXT	data	types	are	two
examples	of	such	data	types	in	modern	database	implementations.	These	data	types	are
specifically	made	to	hold	large	sets	of	data.	The	BLOB	is	a	binary	large	object,	so	its	data
is	treated	as	a	large	binary	string	(a	byte	string).	A	BLOB	is	especially	useful	in	an
implementation	that	needs	to	store	binary	media	files	in	the	database,	such	as	images	or
MP3s.

The	TEXT	data	type	is	a	large	character	string	data	type	that	can	be	treated	as	a	large
VARCHAR	field.	It	is	often	used	when	an	implementation	needs	to	store	large	sets	of
character	data	in	the	database.	An	example	of	this	would	be	storing	HTML	input	from	the
entries	of	a	blog	site.	Storing	this	type	of	data	in	the	database	enables	the	site	to	be
dynamically	updated.

Numeric	Types
Numeric	values	are	stored	in	fields	that	are	defined	as	some	type	of	number,	typically
referred	to	as	NUMBER,	INTEGER,	REAL,	DECIMAL,	and	so	on.

The	following	are	the	standards	for	SQL	numeric	values:

	BIT(n)

	BIT	VARYING(n)

	DECIMAL(p,s)

	INTEGER

	SMALLINT

	BIGINT

	FLOAT(p,s)

	DOUBLE	PRECISION(p,s)

	REAL(s)

p	represents	a	number	identifying	the	allocated	or	maximum	length	of	the	particular	field
for	each	appropriate	definition.

s	is	a	number	to	the	right	of	the	decimal	point,	such	as	34.ss.

A	common	numeric	data	type	in	SQL	implementations	is	NUMERIC,	which
accommodates	the	direction	for	numeric	values	provided	by	ANSI.	Numeric	values	can	be
stored	as	zero,	positive,	negative,	fixed,	and	floating-point	numbers.	The	following	is	an
example	using	NUMERIC:

NUMERIC(5)

This	example	restricts	the	maximum	value	entered	in	a	particular	field	to	99999.	Note	that
all	the	database	implementations	that	we	use	for	the	examples	support	the	NUMERIC	type

but	implement	it	as	a	DECIMAL.

Decimal	Types
Decimal	values	are	numeric	values	that	include	the	use	of	a	decimal	point.	The	standard
for	a	decimal	in	SQL	follows,	where	p	is	the	precision	and	s	is	the	decimal’s	scale:

DECIMAL(p,s)

The	precision	is	the	total	length	of	the	numeric	value.	In	a	numeric	defined
DECIMAL(4,2),	the	precision	is	4,	which	is	the	total	length	allocated	for	a	numeric
value.	The	scale	is	the	number	of	digits	to	the	right	of	the	decimal	point.	The	scale	is	2	in
the	previous	DECIMAL(4,2)	example.	If	a	value	has	more	places	to	the	right	side	of	the
decimal	point	than	the	scale	allows,	the	value	is	rounded;	for	instance,	34.33	inserted
into	a	DECIMAL(3,1)	is	typically	rounded	to	34.3.

If	a	numeric	value	were	defined	as	the	following	data	type,	the	maximum	value	allowed
would	be	99.99:

DECIMAL(4,2)

The	precision	is	4,	which	represents	the	total	length	allocated	for	an	associated	value.	The
scale	is	2,	which	represents	the	number	of	places,	or	bytes,	reserved	to	the	right	side	of	the
decimal	point.	The	decimal	point	does	not	count	as	a	character.

Allowed	values	for	a	column	defined	as	DECIMAL(4,2)	include	the	following:

	12

	12.4

	12.44

	12.449

The	last	numeric	value,	12.449,	is	rounded	off	to	12.45	upon	input	into	the	column.	In
this	case,	any	numbers	between	12.445	and	12.449	would	be	rounded	to	12.45.

Integers
An	integer	is	a	numeric	value	that	does	not	contain	a	decimal,	only	whole	numbers	(both
positive	and	negative).

Valid	integers	include	the	following:

	1

	0

	–1

	99

	–99

	199

Floating-Point	Decimals
Floating-point	decimals	are	decimal	values	whose	precision	and	scale	are	variable	lengths
and	virtually	without	limit.	Any	precision	and	scale	is	acceptable.	The	REAL	data	type
designates	a	column	with	single-precision,	floating-point	numbers.	The	DOUBLE
PRECISION	data	type	designates	a	column	that	contains	double-precision,	floating-point
numbers.	To	be	considered	a	single-precision	floating	point,	the	precision	must	be
between	1	and	21	inclusive.	To	be	considered	a	double-precision	floating	point,	the
precision	must	be	between	22	and	53	inclusive.	The	following	are	examples	of	the	FLOAT
data	type:

	FLOAT

	FLOAT(15)

	FLOAT(50)

Date	and	Time	Types
Date	and	time	data	types	are	quite	obviously	used	to	keep	track	of	information	concerning
dates	and	time.	Standard	SQL	supports	DATETIME	data	types,	which	include	the
following	specific	data	types:

	DATE

	TIME

	DATETIME

	TIMESTAMP

The	elements	of	a	DATETIME	data	type	consist	of	the	following:

	YEAR

	MONTH

	DAY

	HOUR

	MINUTE

	SECOND

Note:	Fractions	and	Leap	Seconds

The	SECOND	element	can	also	be	broken	down	to	fractions	of	a	second.	The	range
is	from	00.000	to	61.999,	although	some	implementations	of	SQL	might	not
support	this	range.	The	extra	1.999	seconds	is	used	for	leap	seconds.

Be	aware	that	each	implementation	of	SQL	might	have	its	own	customized	data	type	for
dates	and	times.	The	previous	data	types	and	elements	are	standards	to	which	each	SQL
vendor	should	adhere,	but	be	advised	that	most	implementations	have	their	own	data	type

for	date	values,	varying	in	both	appearance	and	the	way	date	information	is	actually	stored
internally.

A	length	is	not	normally	specified	for	a	date	data	type.	Later	in	this	hour,	you	learn	more
about	dates—how	date	information	is	stored	in	some	implementations	and	how	to
manipulate	dates	and	times	using	conversion	functions.	You	also	study	practical	examples
of	how	dates	and	times	are	used	in	the	real	world.

Literal	Strings
A	literal	string	is	a	series	of	characters,	such	as	a	name	or	a	phone	number,	which	is
explicitly	specified	by	a	user	or	program.	Literal	strings	consist	of	data	with	the	same
attributes	as	the	previously	discussed	data	types,	but	the	value	of	the	string	is	known.	The
value	of	a	column	is	usually	unknown	because	a	column	typically	has	a	different	value
associated	with	each	row	of	data	in	a	table.

You	do	not	actually	specify	data	types	with	literal	strings—you	simply	specify	the	string.
Some	examples	of	literal	strings	follow:

	'Hello'

	45000

	"45000"

	3.14

	'November	1,	1997'

The	alphanumeric	strings	are	enclosed	by	single	quotation	marks,	whereas	the	number
value	45000	is	not.	Also	notice	that	the	second	numeric	value	of	45000	is	enclosed	by
quotation	marks.	Generally	speaking,	character	strings	require	quotation	marks,	whereas
numeric	strings	don’t.

The	process	that	converts	a	number	into	a	numeric	type	is	known	as	an	implicit
conversion.	This	means	that	the	database	attempts	to	figure	out	what	type	it	needs	to
create	for	the	object.	So	if	you	do	not	have	a	number	enclosed	with	single	quotation
marks,	the	SQL	compiler	assumes	that	you	want	a	numeric	type.	You	need	to	be	careful
when	working	with	data	to	ensure	that	the	data	is	being	represented	as	you	want	it	to	be.
Otherwise,	it	might	skew	your	results	or	result	in	an	unexpected	error.	You	see	later	how
literal	strings	are	used	with	database	queries.

NULL	Data	Types
As	you	should	know	from	Hour	1,	a	NULL	value	is	a	missing	value	or	a	column	in	a	row
of	data	that	has	not	been	assigned	a	value.	NULL	values	are	used	in	nearly	all	parts	of
SQL,	including	the	creation	of	tables,	search	conditions	for	queries,	and	even	in	literal
strings.

The	way	a	NULL	value	is	designated	is	simply	using	the	keyword	NULL.

Because	the	following	is	in	quotations,	it	does	not	represent	a	NULL	value,	but	a	literal

string	containing	the	characters	N-U-L-L:
‘NULL’

When	using	the	NULL	data	type,	it	is	important	to	realize	that	data	is	not	required	in	a
particular	field.	If	data	is	always	required	for	a	given	field,	always	use	NOT	NULL	with	a
data	type.	If	there	is	a	chance	that	there	might	not	always	be	data	for	a	field,	it	is	better	to
use	NULL.

BOOLEAN	Values
A	BOOLEAN	value	is	a	value	of	TRUE,	FALSE,	or	NULL.	BOOLEAN	values	are	used	to
make	data	comparisons.	For	example,	when	criteria	are	specified	for	a	query,	each
condition	evaluates	to	a	TRUE,	FALSE,	or	NULL.	If	the	BOOLEAN	value	of	TRUE	is
returned	by	all	conditions	in	a	query,	data	is	returned.	If	a	BOOLEAN	value	of	FALSE	or
NULL	is	returned,	data	might	not	be	returned.

Consider	the	following	example:
WHERE	NAME	=	‘SMITH’

This	line	might	be	a	condition	found	in	a	query.	The	condition	is	evaluated	for	every	row
of	data	in	the	table	that	is	queried.	If	the	value	of	NAME	is	SMITH	for	a	row	of	data	in	the
table,	the	condition	returns	the	value	TRUE,	thereby	returning	the	data	associated	with	that
record.

Most	database	implementations	do	not	implement	a	strict	BOOLEAN	type	and	instead	opt
to	use	their	own	methodology.	MySQL	contains	the	BOOLEAN	type,	but	it	is	merely	a
synonym	for	its	existing	TINYINT	type.	Oracle	prefers	to	direct	its	users	to	use	a
CHAR(1)	value	to	denote	a	BOOLEAN,	and	Microsoft	SQL	Server	uses	a	value	known	as
BIT.

Note:	Differences	in	Data	Type	Implementations

Some	of	the	data	types	mentioned	during	this	hour	might	not	be	available	by	name
in	the	implementation	of	SQL	that	you	are	using.	Data	types	are	often	named
differently	among	implementations	of	SQL,	but	the	concept	behind	each	data	type
remains.	Most,	if	not	all,	data	types	are	supported	by	relational	databases.

User-Defined	Types
A	user-defined	type	is	a	data	type	that	the	user	defines.	User-defined	types	allow	users	to
customize	their	own	data	types	to	meet	data	storage	needs	and	are	based	on	existing	data
types.	User-defined	data	types	can	assist	the	developer	by	providing	greater	flexibility
during	database	application	development	because	they	maximize	the	number	of
possibilities	for	data	storage.	The	CREATE	TYPE	statement	is	used	to	create	a	user-
defined	type.

For	example,	you	can	create	a	type	as	follows	in	Oracle:
Click	here	to	view	code	image

CREATE	TYPE	PERSON	AS	OBJECT
(NAME							VARCHAR	(30),
	SSN								VARCHAR	(9));

You	can	reference	your	user-defined	type	as	follows:
CREATE	TABLE	EMP_PAY
(EMPLOYEE			PERSON,
	SALARY					DECIMAL(10,2),
	HIRE_DATE		DATE);

Notice	that	the	data	type	referenced	for	the	first	column	EMPLOYEE	is	PERSON.	PERSON
is	the	user-defined	type	you	created	in	the	first	example.

Domains
A	domain	is	a	set	of	valid	data	types	that	can	be	used.	A	domain	is	associated	with	a	data
type,	so	only	certain	data	is	accepted.	After	you	create	a	domain,	you	can	add	constraints
to	the	domain.	Constraints	work	with	data	types,	allowing	you	to	further	specify
acceptable	data	for	a	field.	The	domain	is	used	like	the	user-defined	type.

The	use	of	user-defined	domains	are	not	nearly	as	common	as	user-defined	types	and	is
not	supported	by	Oracle,	for	example.	The	following	syntax	does	not	work	with	the
implementations	downloaded	for	this	book,	but	is	an	example	of	a	basic	syntax	to	create	a
domain:
Click	here	to	view	code	image

CREATE	DOMAIN	MONEY_D	AS	NUMBER(8,2);

You	would	add	constraints	to	your	domain	as	follows:
ALTER	DOMAIN	MONEY_D
ADD	CONSTRAINT	MONEY_CON1
CHECK	(VALUE	>	5);

You	would	reference	the	domain	as	follows:
Click	here	to	view	code	image

CREATE	TABLE	EMP_PAY
(EMP_ID								NUMBER(9),
	EMP_NAME						VARCHAR2(30),
	PAY_RATE						MONEY_D);

Summary
Several	data	types	are	available	with	SQL.	If	you	have	programmed	in	other	languages,
you	probably	recognize	many	of	the	data	types	mentioned.	Data	types	allow	different
types	of	data	to	be	stored	in	the	database,	ranging	from	simple	characters	to	decimal	points
to	date	and	time.	The	concept	of	data	types	is	the	same	in	all	languages,	whether
programming	in	a	third-generation	language	such	as	C	and	passing	variables	or	using	a
relational	database	implementation	and	coding	in	SQL.	Of	course,	each	implementation
has	its	own	names	for	standard	data	types,	but	they	basically	work	the	same.	Also
remember	that	an	RDBMS	does	not	have	to	implement	all	the	data	types	in	the	ANSI
standard	to	be	considered	ANSI	compliant.	Therefore,	it	is	prudent	to	check	with	the
documentation	of	your	specific	RDBMS	implementation	to	see	what	options	you	have
available.

You	must	take	care	in	planning	for	both	the	near	and	distant	future	when	deciding	on	data
types,	lengths,	scales,	and	precisions	in	which	to	store	your	data.	Business	rules	and	how
you	want	the	end	user	to	access	the	data	are	other	factors	in	deciding	on	specific	data
types.	You	should	know	the	nature	of	the	data	and	how	data	in	the	database	is	related	to
assign	proper	data	types.

Q&A
Q.	How	is	it	that	I	can	enter	numbers	such	as	a	person’s	Social	Security	number	in
fields	defined	as	character	fields?

A.	Numeric	values	are	still	alphanumeric,	which	are	allowed	in	string	data	types.	The
process	is	called	an	implicit	conversion	because	the	database	system	handles	it
automatically.	Typically,	the	only	data	stored	as	numeric	values	are	values	used	in
computations.	However,	it	might	be	helpful	for	some	to	define	all	numeric	fields	with
a	numeric	data	type	to	help	control	the	data	entered	in	that	field.

Q.	I	still	do	not	understand	the	difference	between	constant-length	and	varying-
length	data	types.	Can	you	explain?

A.	Say	you	have	an	individual’s	last	name	defined	as	a	constant-length	data	type	with	a
length	of	20	bytes.	Suppose	the	individual’s	name	is	Smith.	When	the	data	is	inserted
into	the	table,	20	bytes	are	taken:	5	for	the	name	and	15	for	the	extra	spaces.
(Remember	that	this	is	a	constant-length	data	type.)	If	you	use	a	varying-length	data
type	with	a	length	of	20	and	insert	Smith,	only	5	bytes	of	space	are	taken.	If	you
then	imagine	that	you	are	inserting	100,000	rows	of	data	into	this	system,	you	could
possibly	save	1.5	million	bytes	of	data.

Q.	Are	there	limits	on	the	lengths	of	data	types?

A.	Yes,	there	are	limits	on	the	lengths	of	data	types,	and	they	do	vary	among	the	various
implementations.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	True	or	false:	An	individual’s	Social	Security	number,	entered	in	the	format
'111111111',	can	be	any	of	the	following	data	types:	constant-length	character,
varying-length	character,	or	numeric.

2.	True	or	false:	The	scale	of	a	numeric	value	is	the	total	length	allowed	for	values.

3.	Do	all	implementations	use	the	same	data	types?

4.	What	are	the	precision	and	scale	of	the	following?
DECIMAL(4,2)
DECIMAL(10,2)
DECIMAL(14,1)

5.	Which	numbers	could	be	inserted	into	a	column	whose	data	type	is
DECIMAL(4,1)?

A.	16.2

B.	116.2

C.	16.21

D.	1116.2

E.	1116.21

6.	What	is	data?

Exercises
1.	Take	the	following	column	titles,	assign	them	to	a	data	type,	decide	on	the	proper
length,	and	give	an	example	of	the	data	you	would	enter	into	that	column:

A.	ssn

B.	state

C.	city

D.	phone_number

E.	zip

F.	last_name

G.	first_name

H.	middle_name

I.	salary

J.	hourly_pay_rate

K.	date_hired

2.	Take	the	same	column	titles	and	decide	whether	they	should	be	NULL	or	NOT
NULL,	realizing	that	in	some	cases	in	which	a	column	would	normally	be	NOT
NULL,	the	column	could	be	NULL	or	vice	versa,	depending	on	the	application:

A.	ssn

B.	state

C.	city

D.	phone_number

E.	zip

F.	last_name

G.	first_name

H.	middle_name

I.	salary

J.	hourly_pay_rate

K.	date_hired

3.	We	are	going	to	set	up	a	database	to	use	for	the	subsequent	hours	in	this	book.
Remember	that	you	must	have	installed	one	of	the	two	database	implementations—
Oracle	or	Microsoft	SQL	Server—before	continuing.

Oracle

Open	your	web	browser	and	navigate	to	the	administration	home	page,	which	is
typically	located	at	http://127.0.0.1:8080/apex.	At	the	login	prompt,	if	this	is	the	first
time	that	you	are	logging	into	the	system,	use	system	as	the	username	and	the
password	that	you	set	up	during	the	installation.	From	the	administration	screen	you
can	select	SQL,	SQL	Commands,	and	Enter	Command.	Now	in	the	command
window,	input	the	following	command	and	click	the	Run	button:

Click	here	to	view	code	image
create	user	canaryairlines	identified	by	canary_2015;

In	Oracle,	when	you	create	a	user,	the	RDMS	automatically	creates	a	schema.	So
with	this	command	you	not	only	created	a	user	for	querying	the	data	but	also	a
schema	named	canaryairlines.	Oracle	treats	the	schema	in	much	the	same
way	that	Microsoft	SQL	Server	treats	a	database.	You	can	view	your	schema	by
simply	logging	out	and	then	logging	back	in	as	the	newly	created	user.

Microsoft

From	the	Start	menu,	type	SSMS.exe	into	the	Run	box	and	press	Enter.	This	brings
up	SQL	Server	Management	Studio.	The	first	dialog	box	to	open	is	for	your
database	connection.	If	it	is	not	already	filled	in	with	localhost	as	the	server
name,	type	localhost	into	the	box.	Leave	the	other	values	such	as	Windows
Authentication	as	they	are,	and	click	the	Connect	button.	On	the	left	side	of	the
screen	is	an	area	called	Object	Explorer	showing	your	localhost	database	instance.
Right-click	localhost	and	select	New	Query.	This	opens	a	query	window	in	the
right	pane.	Now	type	the	following	command	and	press	F5:

Click	here	to	view	code	image
Create	database	CanaryAirlines;

Then	right-click	the	folder	underneath	localhost	that’s	labeled	Databases	and
select	Refresh.	Now	if	you	expand	the	folder	tree	by	clicking	the	+	symbol,	you

should	see	your	CanaryAirlines	database.

Hour	3.	Managing	Database	Objects

What	You’ll	Learn	in	This	Hour:

	An	introduction	to	database	objects

	An	introduction	to	schemas

	An	introduction	to	tables

	A	discussion	of	the	nature	and	attributes	of	tables

	Examples	for	the	creation	and	manipulation	of	tables

	A	discussion	of	table	storage	options

	Concepts	on	referential	integrity	and	data	consistency

In	this	hour,	you	learn	about	database	objects:	what	they	are,	how	they	act,	how	they	are
stored,	and	how	they	relate	to	one	another.	Database	objects	are	the	logical	units	that
compose	the	building	blocks	of	the	database.	The	majority	of	the	instruction	during	this
hour	revolves	around	tables,	but	keep	in	mind	that	there	are	other	database	objects,	many
of	which	are	discussed	in	later	hours	of	study.

Database	Objects	and	Schema
A	database	object	is	any	defined	object	in	a	database	that	is	used	to	store	or	reference
data.	Some	examples	of	database	objects	include	tables,	views,	clusters,	sequences,
indexes,	and	synonyms.	The	table	is	this	hour’s	focus	because	it	is	the	primary	and
simplest	form	of	data	storage	in	a	relational	database.

A	schema	is	a	collection	of	database	objects	normally	associated	with	one	particular
database	username.	This	username	is	called	the	schema	owner,	or	the	owner	of	the	related
group	of	objects.	You	may	have	one	or	multiple	schemas	in	a	database.	The	user	is	only
associated	with	the	schema	of	the	same	name,	and	often	the	terms	are	used
interchangeably.	Basically,	any	user	who	creates	an	object	has	just	created	it	in	her	own
schema	unless	she	specifically	instructs	it	to	be	created	in	another	one.	So,	based	on	a
user’s	privileges	within	the	database,	the	user	has	control	over	objects	that	are	created,
manipulated,	and	deleted.	A	schema	can	consist	of	a	single	table	and	has	no	limits	to	the
number	of	objects	that	it	may	contain,	unless	restricted	by	a	specific	database
implementation.

Say	you	have	been	issued	a	database	username	and	password	by	the	database
administrator.	Your	username	is	USER1.	Suppose	you	log	on	to	the	database	and	then
create	a	table	called	EMPLOYEE_TBL.	According	to	the	database,	your	table’s	actual
name	is	USER1.EMPLOYEE_TBL.	The	schema	name	for	that	table	is	USER1,	which	is
also	the	owner	of	that	table.	You	have	just	created	the	first	table	of	a	schema.

The	good	thing	about	schemas	is	that	when	you	access	a	table	that	you	own	(in	your	own
schema),	you	do	not	have	to	refer	to	the	schema	name.	For	instance,	you	could	refer	to

your	table	as	either	one	of	the	following:
EMPLOYEE_TBL
USER1.EMPLOYEE_TBL

The	first	option	is	preferred	because	it	requires	fewer	keystrokes.	If	another	user	were	to
query	one	of	your	tables,	the	user	would	have	to	specify	the	schema	as	follows:

USER1.EMPLOYEE_TBL

In	Hour	20,	“Creating	and	Using	Views	and	Synonyms,”	you	learn	about	the	distribution
of	permissions	so	that	other	users	can	access	your	tables.	You	also	learn	about	synonyms,
which	enable	you	to	give	a	table	another	name	so	that	you	do	not	have	to	specify	the
schema	name	when	accessing	a	table.	Figure	3.1	illustrates	two	schemas	in	a	relational
database.

FIGURE	3.1	Schemas	in	a	database

In	Figure	3.1,	two	user	accounts	in	the	database	own	tables:	USER1	and	USER2.	Each
user	account	has	its	own	schema.	Some	examples	for	how	the	two	users	can	access	their
own	tables	and	tables	owned	by	the	other	user	follow:
Click	here	to	view	code	image

USER1	accesses	own	TABLE1:												TABLE1

USER1	accesses	own	TEST:														TEST

USER1	accesses	USER2’s	TABLE10								USER2.TABLE10

USER1	accesses	USER2’s	TEST											USER2.TEST

In	this	example,	both	users	have	a	table	called	TEST.	Tables	can	have	the	same	names	in	a
database	as	long	as	they	belong	to	different	schemas.	If	you	look	at	it	this	way,	table
names	are	always	unique	in	a	database	because	the	schema	owner	is	actually	part	of	the
table	name.	For	instance,	USER1.TEST	is	a	different	table	than	USER2.TEST.	If	you	do
not	specify	a	schema	with	the	table	name	when	accessing	tables	in	a	database,	the
database	server	looks	for	a	table	that	you	own	by	default.	That	is,	if	USER1	tries	to	access
TEST,	the	database	server	looks	for	a	USER1-owned	table	named	TEST	before	it	looks
for	other	objects	owned	by	USER1,	such	as	synonyms	to	tables	in	another	schema.	Hour
21,	“Working	with	the	System	Catalog,”	helps	you	fully	understand	how	synonyms	work.

You	must	be	careful	to	understand	the	distinction	between	objects	in	your	own	schema	and
those	objects	in	another	schema.	If	you	do	not	provide	a	schema	when	performing
operations	that	alter	the	table,	such	as	a	DROP	command,	the	database	assumes	that	you
mean	a	table	in	your	own	schema.	This	could	possibly	lead	to	your	unintentionally
dropping	the	wrong	object.	So	you	must	always	pay	careful	attention	as	to	which	user	you
are	currently	logged	into	the	database	with.

Caution:	Object	Naming	Rules	Differ	Between	Systems

Every	database	server	has	rules	concerning	how	you	can	name	objects	and	elements
of	objects,	such	as	field	names.	You	must	check	your	particular	implementation	for
the	exact	naming	conventions	or	rules.

Tables:	The	Primary	Storage	for	Data
The	table	is	the	primary	storage	object	for	data	in	a	relational	database.	In	its	simplest
form,	a	table	consists	of	row(s)	and	column(s),	both	of	which	hold	the	data.	A	table	takes
up	physical	space	in	a	database	and	can	be	permanent	or	temporary.

Columns
A	field,	also	called	a	column	in	a	relational	database,	is	part	of	a	table	that	is	assigned	a
specific	data	type.	The	data	type	determines	what	kind	of	data	the	column	is	allowed	to
hold.	This	enables	the	designer	of	the	table	to	help	maintain	the	integrity	of	the	data.

Every	database	table	must	consist	of	at	least	one	column.	Columns	are	those	elements
within	a	table	that	hold	specific	types	of	data,	such	as	a	person’s	name	or	address.	For
example,	a	valid	column	in	a	customer	table	might	be	the	customer’s	name.	Figure	3.2
illustrates	a	column	in	a	table.

FIGURE	3.2	An	example	of	a	column

Generally,	a	column	name	must	be	one	continuous	string	and	can	be	limited	to	the	number
of	characters	used	according	to	each	implementation	of	SQL.	It	is	typical	to	use
underscores	with	names	to	provide	separation	between	characters.	For	example,	a	column
for	the	customer’s	name	can	be	named	CUSTOMER_NAME	instead	of	CUSTOMERNAME.
This	is	normally	done	to	increase	the	readability	of	database	objects.	There	are	other
naming	conventions	that	you	can	utilize,	such	as	CamelCase,	to	fit	your	specific
preferences.	As	such,	it	is	important	for	a	database	development	team	to	agree	upon	a

standard	naming	convention	and	stick	to	it	so	that	order	is	maintained	within	the
development	process.

The	most	common	form	of	data	stored	within	a	column	is	string	data.	This	data	can	be
stored	as	either	uppercase	or	lowercase	for	character-defined	fields.	The	case	that	you	use
for	data	is	simply	a	matter	of	preference,	which	should	be	based	on	how	the	data	will	be
used.	In	many	cases,	data	is	stored	in	uppercase	for	simplicity	and	consistency.	However,
if	data	is	stored	in	different	case	types	throughout	the	database	(uppercase,	lowercase,	and
mixed	case),	functions	can	be	applied	to	convert	the	data	to	either	uppercase	or	lowercase
if	needed.	These	functions	are	covered	in	Hour	11,	“Restructuring	the	Appearance	of
Data.”

Columns	also	can	be	specified	as	NULL	or	NOT	NULL,	meaning	that	if	a	column	is	NOT
NULL,	something	must	be	entered.	If	a	column	is	specified	as	NULL,	nothing	has	to	be
entered.	NULL	is	different	from	an	empty	set,	such	as	an	empty	string,	and	holds	a	special
place	in	database	design.	As	such,	you	can	relate	a	NULL	value	to	a	lack	of	any	data	in	the
field.

Rows
A	row	is	a	record	of	data	in	a	database	table.	For	example,	a	row	of	data	in	a	customer
table	might	consist	of	a	particular	customer’s	identification	number,	name,	address,	phone
number,	and	fax	number.	A	row	is	composed	of	fields	that	contain	data	from	one	record	in
a	table.	A	table	can	contain	as	little	as	one	row	of	data	and	as	many	as	several	million	rows
of	data	or	records.	Figure	3.3	illustrates	a	row	within	a	table.

FIGURE	3.3	Example	of	a	table	row

The	CREATE	TABLE	Statement
The	CREATE	TABLE	statement	in	SQL	is	used	to	create	a	table.	Although	the	act	of
creating	a	table	is	quite	simple,	much	time	and	effort	should	be	put	into	planning	table
structures	before	the	actual	execution	of	the	CREATE	TABLE	statement.	Carefully
planning	your	table	structure	before	implementation	saves	you	from	having	to	reconfigure
things	after	they	are	in	production.

Note:	Types	We	Use	in	This	Hour

In	this	hour’s	examples,	we	use	the	popular	data	types	CHAR	(constant-length
character),	VARCHAR	(variable-length	character),	NUMBER	(numeric	values,
decimal,	and	nondecimal),	and	DATE	(date	and	time	values).

Some	elementary	questions	need	to	be	answered	when	creating	a	table:

	What	type	of	data	will	be	entered	into	the	table?

	What	will	be	the	table’s	name?

	What	column(s)	will	compose	the	primary	key?

	What	names	shall	be	given	to	the	columns	(fields)?

	What	data	type	will	be	assigned	to	each	column?

	What	will	be	the	allocated	length	for	each	column?

	Which	columns	in	a	table	can	be	left	as	a	null	value?

Note:	Existing	Systems	Often	Have	Existing	Naming	Rules

Be	sure	to	check	your	implementation	for	rules	when	naming	objects	and	other
database	elements.	Often	database	administrators	adopt	a	naming	convention	that
explains	how	to	name	the	objects	within	the	database	so	that	you	can	easily	discern
how	they	are	used.

After	these	questions	are	answered,	the	actual	CREATE	TABLE	statement	is	simple.	The
basic	syntax	to	create	a	table	follows:
Click	here	to	view	code	image

CREATE	TABLE	table_name
(field1		data_type		[not	null],
		field2		data_type		[not	null],
		field3		data_type		[not	null],
		field4		data_type		[not	null],
		field5		data_type		[not	null]);

Note	that	a	semicolon	is	the	last	character	in	the	previous	statement.	Also,	brackets
indicate	portions	that	are	optional.	Most	SQL	implementations	have	some	character	that
terminates	a	statement	or	submits	a	statement	to	the	database	server.	Oracle,	Microsoft
SQL	Server,	and	MySQL	use	the	semicolon.	Although	Transact-SQL,	Microsoft	SQL
Server’s	ANSI	SQL	version,	has	no	such	requirement,	it	is	considered	best	practice	to	use
it.	This	book	uses	the	semicolon.

Create	a	table	called	EMPLOYEE_TBL	in	the	following	example	using	the	syntax	for
MySQL:
Click	here	to	view	code	image

CREATE	TABLE	EMPLOYEE_TBL
(EMP_ID								VARCHAR	(9)			NOT	NULL,
EMP_NAME							VARCHAR	(40)		NOT	NULL,

EMP_ST_ADDR				VARCHAR	(20)		NOT	NULL,
EMP_CITY							VARCHAR	(15)		NOT	NULL,
EMP_ST									VARCHAR	(2)			NOT	NULL,
EMP_ZIP								INTEGER(5)				NOT	NULL,
EMP_PHONE						INTEGER(10)			NULL,
EMP_PAGER						INTEGER(10)			NULL);

The	following	code	would	be	the	compatible	code	for	both	Microsoft	SQL	Server	and
Oracle:
Click	here	to	view	code	image

CREATE	TABLE	EMPLOYEE_TBL
(EMP_ID								VARCHAR	(9)				NOT	NULL,
EMP_NAME							VARCHAR	(40)			NOT	NULL,
EMP_ST_ADDR				VARCHAR	(20)			NOT	NULL,
EMP_CITY							VARCHAR	(15)			NOT	NULL,
EMP_ST									VARCHAR	(2)				NOT	NULL,
EMP_ZIP								INTEGER								NOT	NULL,
EMP_PHONE						INTEGER								NULL,
EMP_PAGER						INTEGER								NULL);

Eight	different	columns	make	up	this	table.	Notice	the	use	of	the	underscore	character	to
break	up	the	column	names	into	what	appears	to	be	separate	words.	(EMPLOYEE	ID	is
stored	as	EMP_ID.)	This	technique	makes	the	table	or	column	name	more	readable.	Each
column	has	been	assigned	a	specific	data	type	and	length,	and	by	using	the	NULL/NOT
NULL	constraint,	you	have	specified	which	columns	require	values	for	every	row	of	data
in	the	table.	The	EMP_PHONE	is	defined	as	NULL,	meaning	that	NULL	values	are	allowed
in	this	column	because	there	might	be	individuals	without	a	telephone	number.	The
information	concerning	each	column	is	separated	by	a	comma,	with	parentheses
surrounding	all	columns	(a	left	parenthesis	before	the	first	column	and	a	right	parenthesis
following	the	information	on	the	last	column).

Caution:	Limitations	on	Data	Types	Vary

Check	your	particular	implementation	for	name	length	limits	and	characters	that	are
allowed;	they	could	differ	from	implementation	to	implementation.

Each	record,	or	row	of	data,	in	this	table	consists	of	the	following:
Click	here	to	view	code	image

EMP_ID,	EMP_NAME,	EMP_ST_ADDR,	EMP_CITY,	EMP_ST,	EMP_ZIP,	EMP_PHONE,
EMP_PAGER

In	this	table,	each	field	is	a	column.	The	column	EMP_ID	could	consist	of	one	employee’s
identification	number	or	many	employees’	identification	numbers,	depending	on	the
requirements	of	a	database	query	or	transaction.

Naming	Conventions
When	selecting	names	for	objects,	specifically	tables	and	columns,	make	sure	the	name
reflects	the	data	that	is	to	be	stored.	For	example,	the	name	for	a	table	pertaining	to
employee	information	could	be	named	EMPLOYEE_TBL.	Names	for	columns	should
follow	the	same	logic.	When	storing	an	employee’s	phone	number,	an	obvious	name	for
that	column	would	be	PHONE_NUMBER.

The	ALTER	TABLE	Command

You	can	modify	a	table	after	the	table	has	been	created	by	using	the	ALTER	TABLE
command.	You	can	add	column(s),	drop	column(s),	change	column	definitions,	add	and
drop	constraints,	and,	in	some	implementations,	modify	table	STORAGE	values.	The
standard	syntax	for	the	ALTER	TABLE	command	follows:
Click	here	to	view	code	image

alter	table	table_name	[modify]	[column	column_name][datatype	|	null	not
null]
[restrict|cascade]
[drop]			[constraint	constraint_name]
[add]				[column]	column	definition

Modifying	Elements	of	a	Table

The	attributes	of	a	column	refer	to	the	rules	and	behavior	of	data	in	a	column.	You	can
modify	the	attributes	of	a	column	with	the	ALTER	TABLE	command.	The	word	attributes
here	refers	to	the	following:

	The	data	type	of	a	column

	The	length,	precision,	or	scale	of	a	column

	Whether	the	column	can	contain	NULL	values

The	following	example	uses	the	ALTER	TABLE	command	on	EMPLOYEE_TBL	to
modify	the	attributes	of	the	column	EMP_ID:
Click	here	to	view	code	image

ALTER	TABLE	EMPLOYEE_TBL	MODIFY
EMP_ID	VARCHAR(10);
Table	altered.

The	column	was	already	defined	as	data	type	VARCHAR	(a	varying-length	character),	but
you	increased	the	maximum	length	from	9	to	10.

Adding	Mandatory	Columns	to	a	Table

One	of	the	basic	rules	for	adding	columns	to	an	existing	table	is	that	the	column	you	are
adding	cannot	be	defined	as	NOT	NULL	if	data	currently	exists	in	the	table.	NOT	NULL
means	that	a	column	must	contain	some	value	for	every	row	of	data	in	the	table.	So,	if	you
are	adding	a	column	defined	as	NOT	NULL,	you	are	contradicting	the	NOT	NULL
constraint	from	the	beginning	if	the	preexisting	rows	of	data	in	the	table	do	not	have
values	for	the	new	column.

There	is,	however,	a	way	to	add	a	mandatory	column	to	a	table:

1.	Add	the	column	and	define	it	as	NULL.	(The	column	does	not	have	to	contain	a
value.)

2.	Insert	a	value	into	the	new	column	for	every	row	of	data	in	the	table.

3.	Alter	the	table	to	change	the	column’s	attribute	to	NOT	NULL.

Adding	Auto-Incrementing	Columns	to	a	Table

Sometimes,	it	is	necessary	to	create	a	column	that	auto-increments	itself	to	give	a	unique
sequence	number	for	a	particular	row.	You	could	do	this	for	many	reasons,	such	as	not
having	a	natural	key	for	the	data	or	wanting	to	use	a	unique	sequence	number	to	sort	the
data.	Creating	an	auto-incrementing	column	is	generally	easy.	In	MySQL,	the
implementation	provides	the	SERIAL	method	to	produce	a	truly	unique	value	for	the
table.	Following	is	an	example:
Click	here	to	view	code	image

CREATE	TABLE	TEST_INCREMENT(
								ID											SERIAL,
								TEST_NAME			VARCHAR(20));

Note:	Using	NULL	for	Table	Creation

NULL	is	a	default	attribute	for	a	column;	therefore,	it	does	not	have	to	be	entered	in
the	CREATE	TABLE	statement.	NOT	NULL	must	always	be	specified.

In	Microsoft	SQL	Server,	we	are	provided	with	an	IDENTITY	column	type.	The
following	is	an	example	for	the	SQL	Server	implementation:
Click	here	to	view	code	image

CREATE	TABLE	TEST_INCREMENT(
								ID					INT	IDENTITY(1,1)	NOT	NULL,
								TEST_NAME			VARCHAR(20));

Oracle	does	not	provide	a	direct	method	for	an	auto-incrementing	column.	However,	one
method	using	an	object	called	a	SEQUENCE	and	a	TRIGGER	simulates	the	effect	in
Oracle.	This	technique	is	discussed	when	we	talk	about	TRIGGERs	in	Hour	22,
“Advanced	SQL	Topics.”

Now	we	can	insert	values	into	the	newly	created	table	without	specifying	a	value	for	our
auto-incrementing	column:
Click	here	to	view	code	image

INSERT	INTO	TEST_INCREMENT(TEST_NAME)
VALUES	(‘FRED’),(‘JOE’),(‘MIKE’),(‘TED’);
SELECT	*	FROM	TEST_INCREMENT;
ID	TEST_NAME
1	FRED
2	JOE
3	MIKE
4	TED

Modifying	Columns

You	need	to	consider	many	things	when	modifying	existing	columns	of	a	table.	Following
are	some	common	rules	for	modifying	columns:

	The	length	of	a	column	can	be	increased	to	the	maximum	length	of	the	given	data
type.

	The	length	of	a	column	can	be	decreased	only	if	the	largest	value	for	that	column	in
the	table	is	less	than	or	equal	to	the	new	length	of	the	column.

	The	number	of	digits	for	a	number	data	type	can	always	be	increased.

	The	number	of	digits	for	a	number	data	type	can	be	decreased	only	if	the	value	with
the	most	number	of	digits	for	that	column	is	less	than	or	equal	to	the	new	number	of
digits	specified	for	the	column.

	The	number	of	decimal	places	for	a	number	data	type	can	either	be	increased	or
decreased.

	The	data	type	of	a	column	can	normally	be	changed.

Some	implementations	might	actually	restrict	you	from	using	certain	ALTER	TABLE
options.	For	example,	you	might	not	be	allowed	to	drop	columns	from	a	table.	To	do	this,
you	have	to	drop	the	table	itself	and	then	rebuild	the	table	with	the	wanted	columns.	You
could	run	into	problems	by	dropping	a	column	in	one	table	that	is	dependent	on	a	column
in	another	table	or	dropping	a	column	that	is	referenced	by	a	column	in	another	table.	Be
sure	to	refer	to	your	specific	implementation	documentation.

Note:	Creating	Tables	for	Exercises

You	create	the	tables	that	you	see	in	these	examples	at	the	end	of	this	hour	in	the
“Exercises”	section.	In	Hour	5,	“Manipulating	Data,”	you	populate	the	tables	you
create	in	this	hour	with	data.

Creating	a	Table	from	an	Existing	Table
You	can	create	a	copy	of	an	existing	table	using	a	combination	of	the	CREATE	TABLE
statement	and	the	SELECT	statement.	The	new	table	has	the	same	column	definitions.	You
can	select	any	or	all	columns.	New	columns	that	you	create	via	functions	or	a	combination
of	columns	automatically	assume	the	size	necessary	to	hold	the	data.	The	basic	syntax	for
creating	a	table	from	another	table	follows:
Click	here	to	view	code	image

create	table	new_table_name	as
select	[*|column1,	column2]
from	table_name
[where]

Caution:	Altering	or	Dropping	Tables	Can	Be	Dangerous

Take	heed	when	altering	and	dropping	tables.	If	you	make	logical	or	typing
mistakes	when	issuing	these	statements,	you	can	lose	important	data.

Notice	some	new	keywords	in	the	syntax,	particularly	the	SELECT	keyword.	SELECT	is	a
database	query	and	is	discussed	in	more	detail	in	Chapter	7,	“Introduction	to	Database
Queries.”	However,	it	is	important	to	know	that	you	can	create	a	table	based	on	the	results
from	a	query.

Both	MySQL	and	Oracle	support	the	CREATE	TABLE	AS	SELECT	method	of	creating
a	table	based	on	another	table.	Microsoft	SQL	Server,	however,	uses	a	different	statement.
For	that	database	implementation,	you	use	a	SELECT…	INTO	statement.	This	statement
is	used	like	this:
Click	here	to	view	code	image

select	[*|column1,	column2]
into	new_table_name
from	table_name
[where]

Here	you	can	examine	some	examples	of	using	this	method.

First,	do	a	simple	query	to	view	the	data	in	the	FlightStatuses	table:
Click	here	to	view	code	image

select	*	from	FlightStatuses;

STATUSCODE					STATUSNAME
–––––––––
CAN												Cancelled
COM												Completed
DEL												Delayed
ONT												On-Time

Next,	create	a	table	called	FlightStatusesNew	based	on	the	previous	query:
Click	here	to	view	code	image

create	table	FlightStatusesNew	as
select	*	from	FlightStatuses;

Table	created.

In	SQL	Server,	the	same	statement	would	be	written	as	such:
select	*
into	FlightStatusesNew
from	FlightStatuses;

Table	created.

Now	if	you	run	a	query	on	the	FlightStatusesNew	table,	your	results	appear	the
same	as	if	you	had	selected	data	from	the	original	table:

select	*

from	FlightStatusNew;

STATUSCODE					STATUSNAME

–––––––––
CAN												Cancelled
COM												Completed
DEL												Delayed
ONT												On-Time

Tip:	What	the	*	Means

SELECT	*	selects	data	from	all	fields	in	the	given	table.	The	*	represents	a
complete	row	of	data,	or	record,	in	the	table.

Dropping	Tables
Dropping	a	table	is	actually	one	of	the	easiest	things	to	do.	When	the	RESTRICT	option	is
used	and	the	table	is	referenced	by	a	view	or	constraint,	the	DROP	statement	returns	an
error.	When	the	CASCADE	option	is	used,	the	drop	succeeds	and	all	referencing	views	and
constraints	are	dropped.	The	syntax	to	drop	a	table	follows:
Click	here	to	view	code	image

drop	table	table_name	[restrict	|	cascade]

SQL	Server	does	not	allow	for	the	use	of	the	CASCADE	option.	So	for	that	particular
implementation,	you	must	ensure	that	you	drop	all	objects	that	reference	the	table	you	are
removing	to	ensure	that	you	are	not	leaving	an	invalid	object	in	your	system.

In	the	following	example,	you	drop	the	table	that	you	just	created:
drop	table	products_tmp;

Table	dropped.

Caution:	Be	Specific	When	Dropping	a	Table

Whenever	you	drop	a	table,	be	sure	to	specify	the	schema	name	or	owner	of	the
table	before	submitting	your	command.	You	could	drop	the	incorrect	table.	If	you
have	access	to	multiple	user	accounts,	ensure	that	you	are	connected	to	the	database
through	the	correct	user	account	before	dropping	tables.

Integrity	Constraints
Integrity	constraints	ensure	accuracy	and	consistency	of	data	in	a	relational	database.	Data
integrity	is	handled	in	a	relational	database	through	the	concept	of	referential	integrity.
Many	types	of	integrity	constraints	play	a	role	in	referential	integrity	(RI).	Referential
integrity	consists	of	rules	that	are	in	place	in	the	database	to	ensure	that	the	data	in	tables
remain	consistent.

Primary	Key	Constraints
Primary	key	is	the	term	that	identifies	one	or	more	columns	in	a	table	that	make	a	row	of
data	unique.	Although	the	primary	key	typically	consists	of	one	column	in	a	table,	more
than	one	column	can	comprise	the	primary	key.	For	example,	either	the	employee’s	Social
Security	number	or	an	assigned	employee	identification	number	is	the	logical	primary	key
for	an	employee	table.	The	objective	is	for	every	record	to	have	a	unique	primary	key	or
value	for	the	employee’s	identification	number.	Because	there	is	probably	no	need	to	have
more	than	one	record	for	each	employee	in	an	employee	table,	the	employee	identification
number	makes	a	logical	primary	key.	The	primary	key	is	assigned	at	table	creation.

The	following	example	identifies	the	EMP_ID	column	as	the	PRIMARY	KEY	for	the
EMPLOYEES	table:
Click	here	to	view	code	image

CREATE	TABLE	EMPLOYEE_TBL
(EMP_ID								VARCHAR(9)					NOT	NULL	PRIMARY	KEY,
EMP_NAME							VARCHAR(40)				NOT	NULL,
EMP_ST_ADDR				VARCHAR(20)				NOT	NULL,
EMP_CITY							VARCHAR(15)				NOT	NULL,
EMP_ST									VARCHAR(2)					NOT	NULL,
EMP_ZIP								INTEGER(5)					NOT	NULL,
EMP_PHONE						INTEGER(10)				NULL,
EMP_PAGER						INTEGER(10)				NULL);

This	method	of	defining	a	primary	key	is	accomplished	during	table	creation.	The	primary
key	in	this	case	is	an	implied	constraint.	You	can	also	specify	a	primary	key	explicitly	as	a
constraint	when	setting	up	a	table,	as	follows:
Click	here	to	view	code	image

CREATE	TABLE	EMPLOYEE_TBL
(EMP_ID								VARCHAR(9)					NOT	NULL,
EMP_NAME							VARCHAR(40)				NOT	NULL,
EMP_ST_ADDR				VARCHAR(20)				NOT	NULL,
EMP_CITY							VARCHAR(15)				NOT	NULL,
EMP_ST									VARCHAR(2)					NOT	NULL,
EMP_ZIP								INTEGER(5)					NOT	NULL,
EMP_PHONE						INTEGER(10)				NULL,
EMP_PAGER						INTEGER(10)				NULL,
PRIMARY	KEY	(EMP_ID));

The	primary	key	constraint	in	this	example	is	defined	after	the	column	comma	list	in	the
CREATE	TABLE	statement.

You	can	define	a	primary	key	that	consists	of	more	than	one	column	by	either	of	the
following	methods,	which	demonstrate	creating	a	primary	key	in	an	Oracle	table:
Click	here	to	view	code	image

CREATE	TABLE	PRODUCT_TST
(PROD_ID							VARCHAR	(10)				NOT	NULL,
VEND_ID							VARCHAR	(10)					NOT	NULL,
PRODUCT							VARCHAR	(30)					NOT	NULL,
COST										NUMBER(8,2)						NOT	NULL,
PRIMARY	KEY	(PROD_ID,	VEND_ID));
ALTER	TABLE	PRODUCTS_TST
ADD	CONSTRAINT	PRODUCTS_PK	PRIMARY	KEY	(PROD_ID,	VEND_ID);

Unique	Constraints
A	unique	column	constraint	in	a	table	is	similar	to	a	primary	key	where	each	value	in	a
column	must	be	a	unique	value.	Although	a	primary	key	constraint	is	placed	on	one
column,	you	can	place	a	unique	constraint	on	another	column	even	though	it	is	not
actually	for	use	as	the	primary	key.

Study	the	following	example:
Click	here	to	view	code	image

CREATE	TABLE	EMPLOYEE_TBL
(EMP_ID								VARCHAR	(9)				NOT	NULL					PRIMARY	KEY,
EMP_NAME							VARCHAR	(40)			NOT	NULL,
EMP_ST_ADDR				VARCHAR	(20)			NOT	NULL,
EMP_CITY							VARCHAR	(15)			NOT	NULL,
EMP_ST									VARCHAR	(2)				NOT	NULL,
EMP_ZIP								INTEGER(5)					NOT	NULL,
EMP_PHONE						INTEGER(10)				NULL									UNIQUE,
EMP_PAGER						INTEGER(10)				NULL);

The	primary	key	in	this	example	is	EMP_ID,	meaning	that	the	employee	identification
number	is	the	column	ensuring	that	every	record	in	the	table	is	unique.	The	primary	key	is
a	column	that	is	normally	referenced	in	queries,	particularly	to	join	tables.	The	column
EMP_PHONE	has	been	designated	as	a	UNIQUE	value,	meaning	that	no	two	employees
can	have	the	same	telephone	number.	There	is	not	a	lot	of	difference	between	the	two,
except	that	the	primary	key	provides	an	order	to	data	in	a	table	and,	in	the	same	respect,
joins	related	tables.

Foreign	Key	Constraints
A	foreign	key	is	a	column	in	a	child	table	that	references	a	primary	key	in	the	parent	table.
A	foreign	key	constraint	is	the	main	mechanism	that	enforces	referential	integrity	between
tables	in	a	relational	database.	A	column	defined	as	a	foreign	key	references	a	column
defined	as	a	primary	key	in	another	table.

Study	the	creation	of	the	foreign	key	in	the	following	example:
Click	here	to	view	code	image

CREATE	TABLE	EMPLOYEE_PAY_TST
(EMP_ID												VARCHAR	(9)			NOT	NULL,
POSITION											VARCHAR	(15)		NOT	NULL,
DATE_HIRE										DATE										NULL,
PAY_RATE											NUMBER(4,2)			NOT	NULL,
DATE_LAST_RAISE				DATE										NULL,
CONSTRAINT	EMP_ID_FK	FOREIGN	KEY	(EMP_ID)	REFERENCES	EMPLOYEE_TBL	(EMP_ID));

The	EMP_ID	column	in	this	example	has	been	designated	as	the	foreign	key	for	the
EMPLOYEE_PAY_TBL	table.	This	foreign	key,	as	you	can	see,	references	the	EMP_ID
column	in	the	EMPLOYEE_TBL	table.	This	foreign	key	ensures	that	for	every	EMP_ID	in
the	EMPLOYEE_PAY_TBL,	there	is	a	corresponding	EMP_ID	in	the	EMPLOYEE_TBL.
This	is	called	a	parent/child	relationship.	The	parent	table	is	the	EMPLOYEE_TBL	table,
and	the	child	table	is	the	EMPLOYEE_PAY_TBL	table.	Study	Figure	3.4	for	a	better
understanding	of	the	parent	table/child	table	relationship.

FIGURE	3.4	The	parent/child	table	relationship

In	this	figure,	the	EMP_ID	column	in	the	child	table	references	the	EMP_ID	column	in	the
parent	table.	For	a	value	to	be	inserted	for	EMP_ID	in	the	child	table,	a	value	for	EMP_ID
in	the	parent	table	must	exist.	Likewise,	for	a	value	to	be	removed	for	EMP_ID	in	the
parent	table,	all	corresponding	first	values	for	EMP_ID	must	be	removed	from	the	child
table.	This	is	how	referential	integrity	works.

You	can	add	a	foreign	key	to	a	table	using	the	ALTER	TABLE	command,	as	shown	in	the
following	example:
Click	here	to	view	code	image

alter	table	employee_pay_tbl
add	constraint	id_fk	foreign	key	(emp_id)
references	employee_tbl	(emp_id);

Note:	ALTER	TABLE	Variations

The	options	available	with	the	ALTER	TABLE	command	differ	among
implementations	of	SQL,	particularly	when	dealing	with	constraints.	In	addition,
the	actual	use	and	definitions	of	constraints	vary,	but	the	concept	of	referential
integrity	should	be	the	same	with	all	relational	databases.

NOT	NULL	Constraints
Previous	examples	use	the	keywords	NULL	and	NOT	NULL	listed	on	the	same	line	as
each	column	and	after	the	data	type.	NOT	NULL	is	a	constraint	that	you	can	place	on	a
table’s	column.	This	constraint	disallows	the	entrance	of	NULL	values	into	a	column;	in
other	words,	data	is	required	in	a	NOT	NULL	column	for	each	row	of	data	in	the	table.
NULL	is	generally	the	default	for	a	column	if	NOT	NULL	is	not	specified,	allowing	NULL
values	in	a	column.

Check	Constraints
You	can	utilize	check	(CHK)	constraints	to	test	the	validity	of	data	entered	into	particular
table	columns.	Check	constraints	provide	back-end	database	edits;	although	edits	are
commonly	found	in	the	front-end	application	as	well.	General	edits	restrict	values	that	can
be	entered	into	columns	or	objects,	whether	within	the	database	or	on	a	front-end
application.	The	check	constraint	is	a	way	of	providing	another	protective	layer	for	the
data.

The	following	example	illustrates	the	use	of	a	check	constraint	in	Oracle:
Click	here	to	view	code	image

CREATE	TABLE	EMPLOYEE_CHECK_TST
(EMP_ID								VARCHAR	(9)				NOT	NULL,
EMP_NAME							VARCHAR	(40)			NOT	NULL,
EMP_ST_ADDR				VARCHAR	(20)			NOT	NULL,
EMP_CITY							VARCHAR	(15)			NOT	NULL,
EMP_ST									VARCHAR	(2)				NOT	NULL,
EMP_ZIP								NUMBER(5)						NOT	NULL,
EMP_PHONE						NUMBER(10)					NULL,
EMP_PAGER						NUMBER(10)					NULL,
PRIMARY	KEY	(EMP_ID),
CONSTRAINT	CHK_EMP_ZIP	CHECK	(EMP_ZIP	=	‘46234’));

The	check	constraint	in	this	table	has	been	placed	on	the	EMP_ZIP	column,	ensuring	that
all	employees	entered	into	this	table	have	a	ZIP	code	of	'46234'.	Perhaps	that	is	a	little
restricting.	Nevertheless,	you	can	see	how	it	works.

If	you	wanted	to	use	a	check	constraint	to	verify	that	the	ZIP	code	is	within	a	list	of
values,	your	constraint	definition	could	look	like	the	following:
Click	here	to	view	code	image

CONSTRAINT	CHK_EMP_ZIP	CHECK	(EMP_ZIP	in	(‘46234’,‘46227’,‘46745’));

If	there	is	a	minimum	pay	rate	that	can	be	designated	for	an	employee,	you	could	have	a
constraint	that	looks	like	the	following:
Click	here	to	view	code	image

CREATE	TABLE	EMPLOYEE_PAY_TBL
(EMP_ID												VARCHAR	(9)				NOT	NULL,
POSITION											VARCHAR	(15)			NOT	NULL,
DATE_HIRE										DATE											NULL,
PAY_RATE											NUMBER(4,2)				NOT	NULL,
DATE_LAST_RAISE				DATE											NULL,
CONSTRAINT		EMP_ID_FK	FOREIGN	KEY	(EMP_ID)	REFERENCES	EMPLOYEE_TBL	(EMP_ID),
CONSTRAINT	CHK_PAY	CHECK	(PAY_RATE	>	12.50));

In	this	example,	any	employee	entered	into	this	table	must	be	paid	more	than	$12.50	an
hour.	You	can	use	just	about	any	condition	in	a	check	constraint,	as	you	can	with	an	SQL
query.	You	learn	more	about	these	conditions	in	Hours	5	and	7.

Dropping	Constraints
Using	the	ALTER	TABLE	command	with	the	DROP	CONSTRAINT	option,	you	can	drop
any	constraint	that	you	have	defined.	For	example,	to	drop	the	primary	key	constraint	in
the	EMPLOYEES	table,	you	can	use	the	following	command:

Click	here	to	view	code	image
ALTER	TABLE	EMPLOYEES	DROP	CONSTRAINT	EMPLOYEES_PK;

Table	altered.

Some	implementations	provide	shortcuts	for	dropping	certain	constraints.	For	example,	to
drop	the	primary	key	constraint	for	a	table	in	MySQL,	you	can	use	the	following
command:
Click	here	to	view	code	image

ALTER	TABLE	EMPLOYEES	DROP	PRIMARY	KEY;

Table	altered.

Tip:	Other	Ways	of	Dealing	with	Constraints

Instead	of	permanently	dropping	a	constraint	from	the	database,	some
implementations	allow	you	to	temporarily	disable	constraints	and	then	enable	them
later.

Summary
You	have	learned	a	little	about	database	objects	in	general,	but	you	have	specifically
learned	about	tables.	The	table	is	the	simplest	form	of	data	storage	in	a	relational	database.
Tables	contain	groups	of	logical	information,	such	as	employee,	customer,	or	product
information.	A	table	is	composed	of	various	columns,	with	each	column	having	attributes;
those	attributes	mainly	consist	of	data	types	and	constraints,	such	as	NOT	NULL	values,
primary	keys,	foreign	keys,	and	unique	values.

You	learned	about	the	CREATE	TABLE	command	and	options,	such	as	storage
parameters,	that	might	be	available	with	this	command.	You	also	learned	how	to	modify
the	structure	of	existing	tables	using	the	ALTER	TABLE	command.	Although	the	process
of	managing	database	tables	might	not	be	the	most	basic	process	in	SQL,	if	you	first	learn
the	structure	and	nature	of	tables,	you	will	more	easily	grasp	the	concept	of	accessing	the
tables,	whether	through	data	manipulation	operations	or	database	queries.	In	later	hours,
you	learn	about	the	management	of	other	objects	in	SQL,	such	as	indexes	on	tables	and
views.

Q&A
Q.	When	I	name	a	table	that	I	am	creating,	is	it	necessary	to	use	a	suffix	such	as
_TBL?

A.	Absolutely	not.	You	do	not	have	to	use	anything.	For	example,	a	table	that	holds
employee	information	could	be	named	something	similar	to	the	following,	or
anything	else	that	would	refer	to	what	type	of	data	is	to	be	stored	in	that	particular
table:
EMPLOYEE
EMP_TBL
EMPLOYEE_TBL
EMPLOYEE_TABLE

WORKER

Q.	Why	is	it	so	important	to	use	the	schema	name	when	dropping	a	table?

A.	Here’s	a	true	story	about	a	new	DBA	who	dropped	a	table.	A	programmer	had
created	a	table	under	his	schema	with	the	same	name	as	a	production	table.	That
particular	programmer	left	the	company.	His	database	account	was	being	deleted
from	the	database,	but	the	DROP	USER	statement	returned	an	error	because	he
owned	outstanding	objects.	After	some	investigation,	it	was	determined	that	his	table
was	not	needed,	so	a	DROP	TABLE	statement	was	issued.

It	worked	like	a	charm,	but	the	problem	was	that	the	DBA	was	logged	in	as	the
production	schema	when	the	DROP	TABLE	statement	was	issued.	The	DBA	should
have	specified	a	schema	name,	or	owner,	for	the	table	to	be	dropped.	Yes,	the	wrong
table	in	the	wrong	schema	was	dropped.	It	took	approximately	8	hours	to	restore	the
production	database.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	Does	the	following	CREATE	TABLE	statement	work?	If	not,	what	needs	to	be	done
to	correct	the	problem(s)?	Are	there	limitations	as	to	what	database	implementation
it	works	in	(MySQL,	Oracle,	or	SQL	Server)?

Click	here	to	view	code	image
Create	table	EMPLOYEE_TABLE	as:
			(ssn													number(9)						not	null,
				last_name								varchar(20)				not	null,
				first_name							varchar(20)				not	null,
				middle_name						varchar(20)				not	null,
				st	address							varchar(30)				not	null,
				city													varchar(20)				not	null,
				state												varchar(2)					not	null,
				zip														number(4)						not	null,
				date	hired							date);

2.	Can	you	drop	a	column	from	a	table?

3.	What	statement	would	you	issue	to	create	a	primary	key	constraint	on	the	preceding
EMPLOYEE_TABLE?

4.	What	statement	would	you	issue	on	the	preceding	EMPLOYEE_TABLE	to	allow	the
MIDDLE_NAME	column	to	accept	NULL	values?

5.	What	statement	would	you	use	to	restrict	the	people	added	into	the	preceding

EMPLOYEE_TABLE	to	reside	only	in	the	state	of	New	York	('NY')?

6.	What	statement	would	you	use	to	add	an	auto-incrementing	column	called	EMPID
to	the	preceding	EMPLOYEE_TABLE	using	both	the	MySQL	and	SQL	Server
syntax?

Exercises
In	this	exercise,	you	create	all	the	tables	in	the	database	to	set	up	the	environment	for	later.
In	addition,	you	execute	several	commands	that	allow	you	to	investigate	the	table	structure
in	an	existing	database.	For	thoroughness	we	have	provided	instructions	for	each	of	the
implementations	(Microsoft	SQL	Server	and	Oracle)	because	each	is	slightly	different	in
its	approach.

Microsoft	SQL	Server

Bring	up	a	command	prompt	and	use	the	following	syntax	to	log	on	to	your	local	SQL
Server	instance,	replacing	username	with	your	username	and	password	with	your
password.	Ensure	that	you	do	not	leave	a	space	between	–p	and	your	password.
Click	here	to	view	code	image

SQLCMD		-S	localhost	-U	username		-Ppassword

At	the	1>	command	prompt,	enter	the	following	command	to	tell	SQL	Server	that	you
want	to	use	the	database	you	created	previously.	Remember	that	with	SQLCMD	you	must
use	the	keyword	GO	to	tell	the	command	tool	that	you	want	the	previous	lines	to	execute.

1>use	learnsql;
2>GO

Now	go	to	Appendix	D,	“Bonus	Exercises,”	to	get	the	DDL	for	the	tables	used	in	this
book.	At	the	1>	prompt,	enter	each	CREATE	TABLE	statement.	Be	sure	to	include	a
semicolon	at	the	end	of	each	CREATE	TABLE	statement	and	follow	up	with	the	keyword
GO	to	have	your	statement	execute.	The	tables	that	you	create	are	used	throughout	the
book.

At	the	1>	prompt,	enter	the	following	command	to	get	a	list	of	your	tables.	Follow	this
command	with	the	keyword	GO:
Click	here	to	view	code	image

Select	name	from	sys.tables;

At	the	1>	prompt,	use	the	sp_help	stored	procedure	to	list	the	columns	and	their
attributes	for	each	one	of	the	tables	you	created.	For	example:

Sp_help_	trips;
Sp_help	flights;

If	you	have	errors	or	typos,	simply	re-create	the	appropriate	table(s).	If	the	table	was
successfully	created	but	has	typos	(perhaps	you	did	not	properly	define	a	column	or	forgot
a	column),	drop	the	table	and	issue	the	CREATE	TABLE	command	again.	The	syntax	of
the	DROP	TABLE	command	follows:

drop	table	flights;

Oracle

Bring	up	a	command	prompt,	and	use	the	following	syntax	to	log	on	to	your	local	Oracle
instance.	You	are	prompted	to	enter	your	username	and	password.

sqlplus

Now	go	to	Appendix	D	to	get	the	DDL	for	the	tables	used	in	this	book.	At	the	SQL>
prompt,	enter	each	CREATE	TABLE	statement.	Be	sure	to	include	a	semicolon	at	the	end
of	each	CREATE	TABLE	statement.	The	tables	that	you	create	are	used	throughout	the
book.

At	the	SQL>	prompt,	enter	the	following	command	to	get	a	list	of	your	tables:
Select	*	from	cat;

If	all	tables	were	successfully	created,	you	should	see	the	following	output:
Click	here	to	view	code	image

SQL>	SELECT	*	FROM	CAT;

TABLE_NAME																					TABLE_TYPE
––––––––––	–––—
TRIPS																										TABLE
TRIPITINERARY																		TABLE
ROUTES																									TABLE
RICH_EMPLOYEES																	TABLE
PASSENGERS																					TABLE
HIGH_SALARIES																		TABLE
FLIGHTSTATUSES																	TABLE
FLIGHTS																								TABLE
EMPLOYEE_MGR																			TABLE
EMPLOYEES																						TABLE
EMPLOYEEPOSITIONS														TABLE
COUNTRIES																						TABLE
AIRPORTS																							TABLE
AIRCRAFTFLEET																		TABLE
AIRCRAFT																							TABLE

15	rows	selected.

At	the	SQL>	prompt,	use	the	DESCRIBE	command	(desc	for	short)	to	list	the	columns
and	their	attributes	for	each	one	of	the	tables	you	created.	For	example:

DESCRIBE	FLIGHTS;

returns	the	following	output:
Click	here	to	view	code	image

Name																																						Null?				Type
–––––––––––––—	––—	–––––––––-
FLIGHTID																																		NOT	NULL	NUMBER(10)
FLIGHTSTART																																								DATE
FLIGHTEND																																										DATE
FLIGHTDURATION																																					NUMBER(5)
ROUTEID																																												NUMBER(10)
AIRCRAFTFLEETID																																				NUMBER(10)
STATUSCODE																																									CHAR(3	CHAR)

If	you	have	errors	or	typos,	simply	re-create	the	appropriate	table(s).	If	the	table	was
successfully	created	but	has	typos	(perhaps	you	did	not	properly	define	a	column	or	forgot

a	column),	drop	the	table,	and	issue	the	CREATE	TABLE	command	again.	The	syntax	of
the	DROP	TABLE	command	follows:

DROP	TABLE	FLIGHTS;

Hour	4.	The	Normalization	Process

What	You’ll	Learn	in	This	Hour:

	Definition	of	normalization

	Benefits	of	normalization

	Advantages	of	denormalization

	Normalization	techniques

	Guidelines	of	normalization

	The	three	normal	forms

	Database	design

In	this	hour,	you	learn	the	process	of	taking	a	raw	database	and	breaking	it	into	a	logical
table	structure.	This	process	is	referred	to	as	normalization.	The	normalization	process	is
used	by	database	developers	to	design	databases	in	which	it	is	easy	to	organize	and
manage	data	while	ensuring	the	accuracy	of	data	throughout	the	database.	The	great	thing
is	that	the	process	is	the	same	regardless	of	which	relational	database	management	system
(RDBMS)	you	use.

The	advantages	and	disadvantages	of	both	normalization	and	denormalization	of	a
database	are	discussed	in	this	hour,	as	well	as	data	integrity	versus	performance	issues	that
pertain	to	normalization.

Normalizing	a	Database
Normalization	is	a	process	of	reducing	redundancies	of	data	in	a	database.	A	technique
that	is	used	when	designing	and	redesigning	a	database,	normalization	optimally	designs	a
database	to	reduce	redundant	data.	The	actual	guidelines	of	normalization,	called	normal
forms,	are	discussed	later	in	this	hour.	It	was	a	difficult	decision	to	cover	normalization	in
this	book	because	of	the	complexity	involved.	Understanding	the	rules	of	the	normal
forms	can	be	difficult	this	early	in	your	SQL	journey.	However,	normalization	is	an
important	process	that,	if	understood,	increases	your	understanding	of	SQL.

Note:	Understanding	Normalization

We	have	attempted	to	simplify	the	process	of	normalization	as	much	as	possible	in
this	hour.	At	this	point,	don’t	be	overly	concerned	with	all	the	specifics	of
normalization;	it	is	most	important	to	understand	the	basic	concepts.

The	Raw	Database
A	database	that	is	not	normalized	might	include	data	that	is	contained	in	one	or	more
tables	for	no	apparent	reason.	This	could	be	bad	for	security	reasons,	disk	space	usage,
speed	of	queries,	efficiency	of	database	updates,	and,	maybe	most	important,	data
integrity.	A	database	before	normalization	is	one	that	has	not	been	broken	down	logically
into	smaller,	more	manageable	tables.	Figure	4.1	illustrate	an	example	of	a	much	simpler
database	than	is	used	in	this	book	before	it	was	normalized.

FIGURE	4.1	The	raw	database

Determining	the	set	of	information	that	the	raw	database	consists	of	is	one	of	the	first	and
most	important	steps	in	logical	database	design.	You	must	know	all	the	data	elements	that
comprise	your	database	to	effectively	apply	the	techniques	discussed	in	this	hour.	Taking
the	time	to	perform	the	due	diligence	of	gathering	the	set	of	required	data	keeps	you	from
having	to	backtrack	your	database	design	scheme	because	of	missing	data	elements.

Logical	Database	Design
Any	database	should	be	designed	with	the	end	user	in	mind.	Logical	database	design,	also
referred	to	as	the	logical	model,	is	the	process	of	arranging	data	into	logical,	organized
groups	of	objects	that	can	easily	be	maintained.	The	logical	design	of	a	database	should
reduce	data	repetition	or	go	so	far	as	to	completely	eliminate	it.	After	all,	why	store	the
same	data	twice?	In	addition,	the	logical	database	design	should	strive	to	make	the
database	easy	to	maintain	and	update.	Naming	conventions	used	in	a	database	should	also
be	standard	and	logical	to	aid	in	this	endeavor.

The	End	User’s	Needs

The	needs	of	the	end	user	should	be	one	of	the	top	considerations	when	designing	a
database.	Remember	that	the	end	user	is	the	person	who	ultimately	uses	the	database.
There	should	be	ease	of	use	through	the	user’s	front-end	tool	(a	client	program	that
enables	a	user	access	to	a	database),	but	this,	along	with	optimal	performance,	cannot	be
achieved	if	the	user’s	needs	are	not	considered.

Some	user-related	design	considerations	include	the	following:

	What	data	should	be	stored	in	the	database?

	How	does	the	user	access	the	database?

	What	privileges	does	the	user	require?

	How	should	the	data	be	grouped	in	the	database?

	What	data	is	the	most	commonly	accessed?

	How	is	all	data	related	in	the	database?

	What	measures	should	be	taken	to	ensure	accurate	data?

	What	measures	can	be	taken	to	reduce	redundancy	of	data?

	What	measures	can	be	taken	to	ensure	ease	of	use	for	the	end	user	who	is
maintaining	the	data?

Data	Redundancy

Data	should	not	be	redundant;	the	duplication	of	data	should	be	kept	to	a	minimum	for
several	reasons.	For	example,	it	is	unnecessary	to	store	an	employee’s	home	address	in
more	than	one	table.	With	duplicate	data,	unnecessary	space	is	used.	Confusion	is	always
a	threat	when,	for	instance,	an	address	for	an	employee	in	one	table	does	not	match	the
address	for	the	same	employee	in	another	table.	Which	table	is	correct?	Do	you	have
documentation	to	verify	the	employee’s	current	address?	As	if	data	management	were	not
difficult	enough,	redundancy	of	data	could	prove	to	be	a	disaster.

Reducing	redundancy	also	ensures	that	updating	the	data	within	the	database	is	relatively
simple.	If	you	have	a	single	table	for	the	employees’	addresses	and	you	update	that	table
with	new	addresses,	you	can	rest	assured	that	it	is	updated	for	everyone	who	is	viewing
the	data.

Normal	Forms
The	next	sections	discuss	normal	forms,	an	integral	concept	involved	in	the	process	of
database	normalization.

Normal	form	is	a	way	of	measuring	the	levels,	or	depth,	to	which	a	database	has	been
normalized.	A	database’s	level	of	normalization	is	determined	by	the	normal	form.

The	following	are	the	three	most	common	normal	forms	in	the	normalization	process:

	The	first	normal	form

	The	second	normal	form

	The	third	normal	form

There	are	normal	forms	beyond	these,	but	they	are	used	far	less	often	than	the	three	major
ones	noted	here.	Of	the	three	major	normal	forms,	each	subsequent	normal	form	depends
on	normalization	steps	taken	in	the	previous	normal	form.	For	example,	to	normalize	a
database	using	the	second	normal	form,	the	database	must	be	in	the	first	normal	form.

First	Normal	Form

The	objective	of	the	first	normal	form	is	to	divide	the	base	data	into	tables.	When	each
table	has	been	designed,	a	primary	key	is	assigned	to	most	or	all	tables.	Remember	from
Hour	3,	“Managing	Database	Objects,”	that	your	primary	key	must	be	a	unique	value,	so
try	to	select	a	data	element	for	the	primary	key	that	naturally	uniquely	identifies	a	specific
piece	of	data.	Examine	Figure	4.2,	which	illustrates	how	the	raw	database	shown	in	Figure
4.1	has	been	redeveloped	using	the	first	normal	form.

FIGURE	4.2	The	first	normal	form

You	can	see	that	to	achieve	the	first	normal	form,	data	had	to	be	broken	into	logical	units
of	related	information,	each	having	a	primary	key	and	ensuring	that	there	are	no	repeated
groups	in	any	of	the	tables.	Instead	of	one	large	table,	there	are	now	smaller,	more
manageable	tables:	EMPLOYEE_TBL,	CUSTOMER_TBL,	and	PRODUCTS_TBL.	The
primary	keys	are	normally	the	first	columns	listed	in	a	table;	in	this	case,	EMP_ID,
CUST_ID,	and	PROD_ID.	This	is	a	normal	convention	that	you	should	use	when
diagramming	your	database	to	ensure	that	it	is	easily	readable.

However,	your	primary	key	could	also	be	made	up	of	more	than	one	of	the	columns	in	the
data	set.	Often,	these	values	are	not	simple	database-generated	numbers	but	logical	points

of	data	such	as	a	product’s	name	or	a	book’s	ISBN.	These	are	commonly	referred	to	as
natural	keys	because	they	would	uniquely	define	a	specific	object	regardless	of	whether	it
was	in	a	database.	The	main	thing	that	you	need	to	remember	in	picking	out	your	primary
key	for	a	table	is	that	it	must	uniquely	identify	a	single	row.	Without	this,	you	introduce
the	possibility	of	adding	duplication	into	your	results	of	queries	and	prevent	yourself	from
doing	even	simple	things	such	as	removing	a	particular	row	of	data	based	solely	on	the
key.

Second	Normal	Form

The	objective	of	the	second	normal	form	is	to	take	data	that	is	only	partly	dependent	on
the	primary	key	and	enter	that	data	into	another	table.	Figure	4.3	illustrates	the	second
normal	form.

FIGURE	4.3	The	second	normal	form

As	shown	in	the	figure,	the	second	normal	form	is	derived	from	the	first	normal	form	by
further	breaking	two	tables	into	more	specific	units.

EMPLOYEE_TBL	is	split	into	two	tables	called	EMPLOYEE_TBL	and
EMPLOYEE_PAY_TBL.	Personal	employee	information	is	dependent	on	the	primary	key
(EMP_ID)	so	that	information	remained	in	the	EMPLOYEE_TBL	(EMP_ID,
LAST_NAME,	FIRST_NAME,	MIDDLE_NAME,	ADDRESS,	CITY,	STATE,	ZIP,	PHONE,
and	PAGER).	However,	the	information	that	is	only	partly	dependent	on	the	EMP_ID
(each	individual	employee)	populates	EMPLOYEE_PAY_TBL	(EMP_ID,	POSITION,
POSITION_DESC,	DATE_HIRE,	PAY_RATE,	and	DATE_LAST_RAISE).	Notice	that

both	tables	contain	the	column	EMP_ID.	This	is	the	primary	key	of	each	table	and	is	used
to	match	corresponding	data	between	the	two	tables.

CUSTOMER_TBL	is	split	into	two	tables	called	CUSTOMER_TBL	and	ORDERS_TBL.
What	took	place	is	similar	to	what	occurred	in	the	EMPLOYEE_TBL.	Columns	that	were
partly	dependent	on	the	primary	key	were	directed	to	another	table.	The	order	of	the
information	for	a	customer	depends	on	each	CUST_ID	but	does	not	directly	depend	on	the
general	customer	information	in	the	original	table.

Third	Normal	Form

The	third	normal	form’s	objective	is	to	remove	data	from	a	table	that	is	not	dependent	on
the	primary	key.	Figure	4.4	illustrates	the	third	normal	form.

FIGURE	4.4	The	third	normal	form

Another	table	was	created	to	display	the	use	of	the	third	normal	form.
EMPLOYEE_PAY_TBL	is	split	into	two	tables:	one	table	containing	the	actual	employee
pay	information	and	the	other	containing	the	position	descriptions,	which	do	not	need	to
reside	in	EMPLOYEE_PAY_TBL.	The	POSITION_DESC	column	is	totally	independent
of	the	primary	key,	EMP_ID.	As	you	can	see,	the	normalization	process	is	a	series	of	steps
that	breaks	down	the	data	from	your	raw	database	into	discrete	tables	of	related	data.

Naming	Conventions
Naming	conventions	are	one	of	the	foremost	considerations	when	you	normalize	a
database.	Names	are	how	you	refer	to	objects	in	the	database.	You	want	to	give	your	tables
names	that	are	descriptive	of	the	type	of	information	they	contain	so	that	the	data	you	look
for	is	easy	to	find.	Descriptive	table	names	are	especially	important	for	users	who	had	no
part	in	the	database	design	but	who	need	to	query	the	database.

Companies	should	have	a	company-wide	naming	convention	to	provide	guidance	in	the
naming	of	not	only	tables	within	the	database,	but	also	users,	filenames,	and	other	related
objects.	Naming	conventions	also	help	in	database	administration	by	making	it	easier	to
discern	the	purpose	of	tables	and	locations	of	files	within	a	database	system.	Designing
and	enforcing	naming	conventions	is	one	of	a	company’s	first	steps	toward	a	successful
database	implementation.

Benefits	of	Normalization
Normalization	provides	numerous	benefits	to	a	database.	Some	of	the	major	benefits
include	the	following:

	Greater	overall	database	organization

	Reduction	of	redundant	data

	Data	consistency	within	the	database

	A	much	more	flexible	database	design

	A	better	handle	on	database	security

	Reinforcement	of	the	concept	of	referential	integrity

Organization	is	brought	about	by	the	normalization	process,	making	everyone’s	job	easier,
from	the	user	who	accesses	tables	to	the	database	administrator	(DBA)	who	is	responsible
for	the	overall	management	of	every	object	in	the	database.	Data	redundancy	is	reduced,
which	simplifies	data	structures	and	conserves	disk	space.	Because	duplicate	data	is
minimized,	the	possibility	of	inconsistent	data	is	greatly	reduced.	For	example,	in	one
table	an	individual’s	name	could	read	STEVE	SMITH,	whereas	the	name	of	the	same
individual	might	read	STEPHEN	R.	SMITH	in	another	table.	Reducing	duplicate	data
increases	data	integrity,	or	the	assurance	of	consistent	and	accurate	data	within	a	database.
Because	the	database	has	been	normalized	and	broken	into	smaller	tables,	you	have	more
flexibility	in	modifying	existing	structures.	It	is	much	easier	to	modify	a	small	table	with
little	data	than	to	modify	one	big	table	that	holds	all	the	vital	data	in	the	database.	Lastly,
security	is	provided	in	the	sense	that	the	DBA	can	grant	access	to	a	limited	number	of
tables	to	certain	users.	Security	is	easier	to	control	when	normalization	has	occurred
because	data	has	been	grouped	into	neatly	organized	sets.

Referential	integrity	simply	means	that	the	values	of	one	column	in	a	table	depend	on	the
values	of	a	column	in	another	table.	For	instance,	for	a	trip	to	have	a	record	in	the	TRIPS
table,	there	must	first	be	a	record	for	a	passenger	that	is	going	to	take	the	trip	in	the
PASSENGERS	table.	Integrity	constraints	can	also	control	values	by	restricting	a	range	of
values	for	a	column.	For	example,	if	a	passenger’s	date	of	birth	is	required	for	travel,	then
we	would	need	to	ensure	that	it	always	contains	a	valid	value.	Referential	integrity	is
typically	controlled	through	the	use	of	primary	and	foreign	keys.	The	integrity	constraint
should	be	created	at	the	table’s	creation	so	that	you	can	be	confident	that	all	the	data
entered	into	a	table	is	consistent.	Otherwise,	constraints	placed	on	a	table	after	creation
and	load	of	data	may	require	a	data	cleanup	operation.

In	a	table,	a	foreign	key,	normally	a	single	field,	directly	references	a	primary	key	in

another	table	to	enforce	referential	integrity.	In	the	preceding	paragraph,	the
PASSENGERID	in	TRIPS	is	a	foreign	key	that	references	PASSENGERID	in
PASSENGER.	Normalization	helps	to	enhance	and	enforce	these	constraints	by	logically
breaking	down	data	into	subsets	that	are	referenced	by	a	primary	key.

Drawbacks	of	Normalization
Although	most	successful	databases	are	normalized	to	some	degree,	there	is	one
substantial	drawback	of	a	normalized	database:	reduced	database	performance.	The
acceptance	of	reduced	performance	requires	the	knowledge	that	when	a	query	or
transaction	request	is	sent	to	the	database,	there	are	factors	involved	such	as	CPU	usage,
memory	usage,	and	input/output	(I/O).	To	make	a	long	story	short,	a	normalized	database
requires	much	more	CPU,	memory,	and	I/O	to	process	transactions	and	database	queries
than	a	denormalized	database.	A	normalized	database	must	locate	the	requested	tables	and
then	join	the	data	from	the	tables	to	either	get	the	requested	information	or	to	process	the
wanted	data.	A	more	in-depth	discussion	concerning	database	performance	occurs	in	Hour
18,	“Managing	Database	Users.”

Denormalizing	a	Database
Denormalization	is	the	process	of	taking	a	normalized	database	and	modifying	table
structures	to	allow	controlled	redundancy	for	increased	database	performance.	Attempting
to	improve	performance	is	the	only	reason	to	denormalize	a	database.	A	denormalized
database	is	not	the	same	as	a	database	that	has	not	been	normalized.	Denormalizing	a
database	is	the	process	of	taking	the	level	of	normalization	within	the	database	down	a
notch	or	two.	Remember,	normalization	can	actually	slow	performance	with	its	frequently
occurring	table	join	operations.	(Table	joins	are	discussed	during	Hour	13,	“Joining	Tables
in	Queries.”)

Denormalization	might	involve	recombining	separate	tables	or	creating	duplicate	data
within	tables	to	reduce	the	number	of	tables	that	need	to	be	joined	to	retrieve	the	requested
data,	which	results	in	less	I/O	and	CPU	time.	This	is	normally	advantageous	in	larger	data
warehousing	applications	in	which	aggregate	calculations	are	made	across	millions	of
rows	of	data	within	tables.

There	are	costs	to	denormalization,	however.	Data	redundancy	is	increased	in	a
denormalized	database,	which	can	improve	performance	but	requires	more	extraneous
efforts	to	keep	track	of	related	data.	Application	coding	renders	more	complications
because	the	data	has	been	spread	across	various	tables	and	might	be	more	difficult	to
locate.	In	addition,	referential	integrity	is	more	of	a	chore;	related	data	has	been	divided
among	a	number	of	tables.

There	is	a	happy	medium	in	both	normalization	and	denormalization,	but	both	require	a
thorough	knowledge	of	the	actual	data	and	the	specific	business	requirements	of	the
pertinent	company.	If	you	do	look	at	denormalizing	parts	of	your	database	structure,
carefully	document	the	process	so	that	you	can	see	exactly	how	you	are	handling	issues
such	as	redundancy	to	maintain	data	integrity	within	your	systems.

Summary
A	difficult	decision	has	to	be	made	concerning	database	design:	to	normalize	or	not	to
normalize.	You	always	want	to	normalize	a	database	to	some	degree.	How	much	do	you
normalize	a	database	without	destroying	performance?	The	real	decision	relies	on	the
application.	How	large	is	the	database?	What	is	its	purpose?	What	types	of	users	are	going
to	access	the	data?	This	hour	covered	the	three	most	common	normal	forms,	the	concepts
behind	the	normalization	process,	and	the	integrity	of	data.	The	normalization	process
involves	many	steps,	most	of	which	are	optional	but	vital	to	the	functionality	and
performance	of	your	database.	Regardless	of	how	deep	you	decide	to	normalize,	there	is
almost	always	a	trade-off,	either	between	simple	maintenance	and	questionable
performance	or	complicated	maintenance	and	better	performance.	In	the	end,	the
individual	(or	team	of	individuals)	designing	the	database	must	decide,	and	that	person	or
team	is	responsible.

Q&A
Q.	Why	should	I	be	so	concerned	with	the	end	users’	needs	when	designing	the
database?

A.	The	end	users	are	the	actual	data	experts	who	use	the	database,	and,	in	that	respect,
they	should	be	the	focus	of	any	database	design	effort.	The	database	designer	only
helps	organize	the	data.

Q.	Is	normalization	more	advantageous	than	denormalization?

A.	It	can	be	more	advantageous.	However,	denormalization,	to	a	point,	could	be	more
advantageous.	Remember,	many	factors	help	determine	which	way	to	go.	You	will
probably	normalize	your	database	to	reduce	repetition	in	the	database,	but	you	might
denormalize	to	a	certain	extent	to	improve	performance.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	True	or	false:	Normalization	is	the	process	of	grouping	data	into	logical	related
groups.

2.	True	or	false:	Having	no	duplicate	or	redundant	data	in	a	database	and	having
everything	in	the	database	normalized	is	always	the	best	way	to	go.

3.	True	or	false:	If	data	is	in	the	third	normal	form,	it	is	automatically	in	the	first	and
second	normal	forms.

4.	What	is	a	major	advantage	of	a	denormalized	database	versus	a	normalized
database?

5.	What	are	some	major	disadvantages	of	denormalization?

6.	How	do	you	determine	if	data	needs	to	be	moved	to	a	separate	table	when
normalizing	your	database?

7.	What	are	the	disadvantages	of	over-normalizing	your	database	design?

Exercises
1.	You	are	developing	a	new	database	for	a	small	company.	Take	the	following	data
and	normalize	it.	Keep	in	mind	that	there	would	be	many	more	items	for	a	small
company	than	you	are	given	here.

Employees:

Angela	Smith,	secretary,	317-545-6789,	RR	1	Box	73,	Greensburg,	Indiana,	47890,
$9.50	per	hour,	date	started	January	22,	2006,	SSN	is	323149669.

Jack	Lee	Nelson,	salesman,	3334	N.	Main	St.,	Brownsburg,	IN,	45687,	317-852-
9901,	salary	of	$35,000.00	per	year,	SSN	is	312567342,	date	started	10/28/2005.

Customers:

Robert’s	Games	and	Things,	5612	Lafayette	Rd.,	Indianapolis,	IN,	46224,	317-291-
7888,	customer	ID	is	432A.

Reed’s	Dairy	Bar,	4556	W	10th	St.,	Indianapolis,	IN,	46245,	317-271-9823,
customer	ID	is	117A.

Customer	Orders:

Customer	ID	is	117A,	date	of	last	order	is	December	20,	2009,	the	product	ordered
was	napkins,	and	the	product	ID	is	661.

2.	Log	in	to	your	new	database	instance	just	as	you	did	in	Hour	3.	Ensure	that	you	are
in	the	CanaryAirlines	database	by	using	the	following	statement:
USE	CanaryAirlines;

In	Oracle	this	is	known	as	a	schema;	by	default	you	create	items	in	your	user	schema
when	you	use	Oracle.

Now	that	you	are	in	the	database,	run	the	following	select	statements	to	look	at	the
data	in	the	tables	FLIGHTS,	AIRCRAFTFLEET,	AIRCRAFT,	and
FLIGHTSTATUSES.	How	can	you	denormalize	these	into	a	single	table?

Click	here	to	view	code	image

SELECT	*	FROM	FLIGHTS;

SELECT	*	FROM	FLIGHTSTATUSES;

SELECT	*	FROM	AIRCRAFTFLEET;

SELECT	*	FROM	AIRCRAFT;

Hour	5.	Manipulating	Data

What	You’ll	Learn	in	This	Hour:

	An	overview	of	DML

	Instruction	on	how	to	manipulate	data	in	tables

	Concepts	behind	table	population	of	data

	How	to	delete	data	from	tables

	How	to	change	or	modify	data	in	tables

In	this	hour,	you	learn	the	piece	of	SQL	known	as	Data	Manipulation	Language	(DML).
You	use	DML	to	change	data	and	tables	in	a	relational	database.

Overview	of	Data	Manipulation
DML	is	the	part	of	SQL	that	enables	a	database	user	to	actually	propagate	changes	among
data	in	a	relational	database.	With	DML,	the	user	can	populate	tables	with	new	data,
update	existing	data	in	tables,	and	delete	data	from	tables.	Simple	database	queries	can
also	be	performed	within	a	DML	command.

The	three	basic	DML	commands	in	SQL	are:

	INSERT

	UPDATE

	DELETE

The	SELECT	command,	which	can	be	used	with	DML	commands,	is	discussed	in	more
detail	in	Hour	7,	“Introduction	to	Database	Queries.”	The	SELECT	command	is	the	basic
query	command	that	you	can	use	after	you	enter	data	into	the	database	with	the	INSERT
command.	So	in	this	hour	we	concentrate	on	getting	the	data	into	our	tables	so	that	we
have	something	interesting	to	use	the	SELECT	command	on.

Populating	Tables	with	New	Data
Populating	a	table	with	data	is	simply	the	process	of	entering	new	data	into	a	table,
whether	through	a	manual	process	using	individual	commands	or	through	batch	processes
using	programs	or	other	related	software.	Manual	population	of	data	refers	to	data	entry
via	a	keyboard.	Automated	population	normally	deals	with	obtaining	data	from	an	external
data	source	(such	as	another	database	or	possibly	a	flat	file)	and	loading	the	obtained	data
into	the	database.

Many	factors	can	affect	what	data	and	how	much	data	can	be	put	into	a	table	when
populating	tables	with	data.	Some	major	factors	include	existing	table	constraints,	the
physical	table	size,	column	data	types,	the	length	of	columns,	and	other	integrity
constraints,	such	as	primary	and	foreign	keys.	The	following	sections	help	you	learn	the

basics	of	inserting	new	data	into	a	table,	in	addition	to	offering	some	Do’s	and	Don’ts.

Inserting	Data	into	a	Table
Use	the	INSERT	statement	to	insert	new	data	into	a	table.	There	are	a	few	options	with
the	INSERT	statement;	look	at	the	following	basic	syntax	to	begin:
Click	here	to	view	code	image

INSERT	INTO	TABLE_NAME
VALUES	(‘value1‘,	‘value2‘,	[NULL]);

Caution:	Data	Is	Case-Sensitive

Do	not	forget	that	SQL	statements	can	be	in	uppercase	or	lowercase.	However,	data
is	sometimes	case-sensitive.	For	example,	if	you	enter	data	into	the	database	as
uppercase,	depending	on	your	database	you	might	have	to	reference	that	data	in
uppercase.	These	examples	use	both	lowercase	and	uppercase	statements	just	to
show	that	it	does	not	affect	the	outcome.

Using	this	INSERT	statement	syntax,	you	must	include	every	column	in	the	specified
table	in	the	VALUES	list.	Notice	that	each	value	in	this	list	is	separated	by	a	comma.
Enclose	the	values	inserted	into	the	table	by	single	quotation	marks	for	character	and
date/time	data	types.	Single	quotation	marks	are	not	required	for	numeric	data	types	or
NULL	values	using	the	NULL	keyword.	A	value	should	be	present	for	each	column	in	the
table,	and	those	values	must	be	in	the	same	order	as	the	columns	are	listed	in	the	table.	In
later	sections,	you	learn	how	to	specify	the	column	ordering,	but	for	now	just	know	that
the	SQL	engine	you	are	working	with	assumes	that	you	want	to	enter	the	data	in	the	same
order	in	which	the	columns	were	created.

In	the	following	example,	you	insert	a	new	record	into	the	COUNTRIES	table.

Here	is	the	table	structure:
Click	here	to	view	code	image

Countries
COLUMN	Name																					Null?				DATA	Type
–––––––––––––––––-
CountryCode																					NOT	NULL	CHAR(3)
Country																									NOT	NULL	VARCHAR(50)
CountryGeoCodeID																NOT	NULL	VARCHAR(100)
WorldAreaCode																			NOT	NULL	INT

Here	is	the	sample	INSERT	statement:
Click	here	to	view	code	image

INSERT	INTO	Countries
VALUES	(‘UTO’,‘Utopia’,	‘11111’,0);
1	row	created.

In	this	example,	four	values	were	inserted	into	a	table	with	four	columns.	The	inserted
values	are	in	the	same	order	as	the	columns	listed	in	the	table.	The	first	three	values	are
inserted	using	single	quotation	marks	because	the	data	types	of	the	corresponding	columns
are	character	data	types.	The	fourth	value’s	associated	column,	WORLDAREACODE,	is	a

numeric	data	type	and	does	not	require	quotation	marks;	although	you	can	use	them
without	fear	of	affecting	the	outcome	of	the	statement.

Note:	When	to	Use	Quotation	Marks

Although	single	quotation	marks	are	not	required	around	numeric	data	that	is
inserted,	they	may	be	used	with	any	data	type.	Said	another	way,	single	quotation
marks	are	optional	when	referring	to	numeric	data	values	in	the	database,	but	they
are	required	for	all	other	data	values	(data	types).	Although	usually	a	matter	of
preference,	most	SQL	users	choose	not	to	use	quotation	marks	with	numeric	values
because	their	queries	are	more	readable	without	them.

Inserting	Data	into	Limited	Columns	of	a	Table
There	is	a	way	you	can	insert	data	into	specified	columns.	For	instance,	suppose	you	want
to	insert	all	values	for	a	passenger.	In	this	case,	the	first	column	PASSENGERID	is
referred	to	as	an	identity	or	auto	incrementing	column.	This	means	that	the	value	is	a
numeric	number	that	will	increment	on	its	own	(for	example,	1,	2,	3,	…).	You	must,	in
this	case,	leave	out	the	PASSENGERID	column	by	specifying	a	column	list	as	well	as	a
VALUES	list	in	your	INSERT	statement:
Click	here	to	view	code	image

INSERT	INTO	PASSENGERS
(FIRSTNAME,	LASTNAME,	BIRTHDATE,	COUNTRYCODE)
VALUES
(‘John’,	‘Doe’,	‘1990-10-12’,	‘US’);
1	row	created.

The	syntax	for	inserting	values	into	a	limited	number	of	columns	in	a	table	follows:
Click	here	to	view	code	image

INSERT	INTO	TABLE_NAME	(‘COLUMN1’,	‘COLUMN2’)
VALUES	(‘VALUE1‘,	‘VALUE2‘);

You	use	AIRCRAFT	and	insert	values	into	only	specified	columns	in	the	following
example.

Here	is	the	table	structure:
Click	here	to	view	code	image

AIRCRAFT
COLUMN	NAME																					Null?				DATA	TYPE
–––––––––––––––––—
AIRCRAFTCODE																				NULL					VARCHAR(3)
AIRCRAFTTYPE																				NULL					VARCHAR(75)
FREIGHTONLY																					NULL					VARCHAR2(10)
SEATING																									NULL					NUMERIC(18,0)

Here	is	the	sample	INSERT	statement:
Click	here	to	view	code	image

INSERT	INTO	AIRCRAFT(AIRCRAFTCODE,	AIRCRAFTTYPE,	FREIGHTONLY)
VALUES(‘AAA’,‘Big	Boeing’,0);
1	row	created.

You	have	specified	a	column	list	enclosed	by	parentheses	after	the	table	name	in	the
INSERT	statement.	You	have	listed	all	columns	into	which	you	want	to	insert	data.
SEATING	is	the	only	excluded	column.	If	you	look	at	the	table	definition,	you	can	see	that
SEATING	does	not	require	data	for	every	record	in	the	table.	You	know	that	SEATING
does	not	require	data	because	NULL	is	specified	in	the	table	definition.	NULL	tells	us	that
NULL	values	are	allowed	in	the	column.	Furthermore,	the	list	of	values	must	appear	in	the
same	order	as	the	column	list.

Tip:	Column	List	Ordering	Can	Differ

The	column	list	in	the	INSERT	statement	does	not	have	to	reflect	the	same	order	of
columns	as	in	the	definition	of	the	associated	table,	but	the	list	of	values	must	be	in
the	order	of	the	associated	columns	in	the	column	list.	In	addition,	you	can	leave	off
the	NULL	syntax	for	a	column	because	the	defaults	for	most	RDBMSs	specify	that
columns	allow	NULL	values.

Inserting	Data	from	Another	Table
You	can	insert	data	into	a	table	based	on	the	results	of	a	query	from	another	table	using	a
combination	of	the	INSERT	statement	and	the	SELECT	statement.	Briefly,	a	query	is	an
inquiry	to	the	database	that	either	expects	or	does	not	expect	data	to	be	returned.	See	Hour
7	for	more	information	on	queries.	A	query	is	a	question	that	the	user	asks	the	database,
and	the	data	returned	is	the	answer.	When	combining	the	INSERT	statement	with	the
SELECT	statement,	you	can	insert	the	data	retrieved	from	a	query	into	a	table.

The	syntax	for	inserting	data	from	another	table	is
Click	here	to	view	code	image

insert	into	table_name	[(‘column1’,	‘column2’)]
select	[*|(‘column1‘,	‘column2‘)]
from	table_name
[where	condition(s)];

You	see	three	new	keywords	in	this	syntax,	which	are	covered	here	briefly.	These
keywords	are	SELECT,	FROM,	and	WHERE.	SELECT	is	the	main	command	used	to
initiate	a	query	in	SQL.	FROM	is	a	clause	in	the	query	that	specifies	the	names	of	tables	in
which	the	target	data	should	be	found.	The	WHERE	clause,	also	part	of	the	query,	places
conditions	on	the	query.	A	condition	is	a	way	of	placing	criteria	on	data	affected	by	a	SQL
statement.	A	sample	condition	might	state	this:	WHERE	LASTNAME	=	'SMITH'.	These
three	keywords	are	covered	extensively	during	Hour	7	and	Hour	8,	“Using	Operators	to
Categorize	Data.”

The	following	example	uses	a	simple	query	to	view	all	data	in	the	FLIGHTSTATUSES
table.	SELECT	*	tells	the	database	server	that	you	want	information	on	all	columns	of
the	table.	Because	no	WHERE	clause	is	used,	you	see	all	records	in	the	table	as	well.
Click	here	to	view	code	image

SELECT	*	FROM	FLIGHTSTATUSES;

StatusCode	StatusName
–––-	––––––––––––––––—
CAN								Cancelled
COM								Completed
DEL								Delayed
ONT								On-Time

(4	row(s)	affected)

Now	insert	values	into	the	STATUSES_TMP	table	based	on	the	preceding	query.	For	this
we	use	a	special	SELECT	statement	that	uses	the	INTO	clause	to	push	those	rows	into	a
new	table.	You	can	see	that	four	rows	are	created	in	the	temporary	table:

SELECT	*	INTO	STATUSES_TMP
FROM	FLIGHTSTATUSES;

(4	rows(s)	affected)

You	must	ensure	that	the	columns	returned	from	the	SELECT	query	are	in	the	same	order
as	the	columns	that	you	have	in	your	table	or	INSERT	statement.	In	addition,	double-
check	that	the	data	from	the	SELECT	query	is	compatible	with	the	data	type	of	the	column
that	it	is	inserting	into	the	table.	For	example,	trying	to	insert	a	VARCHAR	field	with
'ABC'	into	a	numeric	column	would	cause	your	statement	to	fail.

The	following	query	shows	all	data	in	the	STATUSES_TMP	table	that	you	just	inserted:
Click	here	to	view	code	image

SELECT	*	FROM	STATUSES_TMP;

StatusCode	StatusName
–––-	––––––––––––––––—
CAN								Cancelled
COM								Completed
DEL								Delayed
ONT								On-Time

(4	row(s)	affected)

Inserting	NULL	Values
Inserting	a	NULL	value	into	a	column	of	a	table	is	a	simple	matter.	You	might	want	to
insert	a	NULL	value	into	a	column	if	the	value	of	the	column	in	question	is	unknown.	For
instance,	not	every	trip	at	an	airport	would	have	a	return	flight,	so	it	would	be	inaccurate
to	enter	an	erroneous	return	flight	number—not	to	mention,	you	would	not	be	efficiently
budgeting	space.	You	can	insert	a	NULL	value	into	a	column	of	a	table	using	the	keyword
NULL.

The	syntax	for	inserting	a	NULL	value	follows:
Click	here	to	view	code	image

insert	into	schema.table_name	values
(‘column1‘,	NULL,	‘column3‘);

Use	the	NULL	keyword	in	the	proper	sequence	of	the	associated	column	that	exists	in	the
table.	That	column	does	not	have	data	in	it	for	that	row	if	you	enter	NULL.	In	the	syntax,	a
NULL	value	is	entered	in	the	place	of	COLUMN2.

Study	the	two	following	examples.

In	this	first	example,	all	columns	in	which	to	insert	values	are	listed,	which	also	happen	to
be	every	column	in	the	AIRCRAFT	table:
Click	here	to	view	code	image

INSERT	INTO	AIRCRAFT(AIRCRAFTCODE,	AIRCRAFTTYPE,	FREIGHTONLY,	SEATING)
VALUES(‘BBB’,‘Boeing’,0,NULL);
	(1	row(s)	affected)

You	inserted	a	NULL	value	for	the	SEATING	column,	meaning	that	you	either	do	not
know	the	seating	capacity,	or	there	is	no	information	at	this	time.

Now	look	at	the	second	example:
Click	here	to	view	code	image

INSERT	INTO	AIRCRAFT
VALUES(‘CCC’,‘Boeing’,0,	NULL);
	(1	row(s)	affected)

This	example	contains	a	slight	difference	from	the	first	statement.	There	is	not	a	column
list.	A	column	list	is	not	required	if	you	insert	data	into	all	columns	of	a	table.	Remember
that	a	NULL	value	signifies	an	absence	of	value	from	a	field	and	is	different	from	an
empty	string.

Lastly,	consider	an	example	in	which	our	FLIGHTSTATUSES	table	allowed	NULL	values
and	you	wanted	to	insert	values	into	the	STATUSES_TMP	table	using	it:
Click	here	to	view	code	image

INSERT	INTO	FLIGHSTATUSES(STATUSCODE,	STATUSNAME)
VALUES(‘UNK’,NULL);

(1	row(s)	affected)

SELECT	*	FROM	FLIGHTSTATUSES	;
StatusCode	StatusName
–––-	––––––––––––––––—
CAN								Cancelled
COM								Completed
DEL								Delayed
ONT								On-Time
UNK								NULL

(5	row(s)	affected)

SELECT	*	INTO	STATUSES_TMP;

(5	row(s)	affected)

In	this	case	the	NULL	values	would	be	inserted	without	intervention	needed	on	your	part
as	long	as	the	column	that	the	data	is	inserted	into	allows	NULL	values.	Later	this	book
addresses	the	need	to	specify	a	DEFAULT	value	for	a	column	that	allows	you	to
automatically	substitute	a	value	for	any	NULLs	that	are	inserted.

Updating	Existing	Data
You	can	modify	pre-existing	data	in	a	table	using	the	UPDATE	command.	This	command
does	not	add	new	records	to	a	table,	nor	does	it	remove	records—UPDATE	simply	updates
existing	data.	The	update	is	generally	used	to	update	one	table	at	a	time	in	a	database,	but
you	can	use	it	to	update	multiple	columns	of	a	table	at	the	same	time.	An	individual	row	of
data	in	a	table	can	be	updated,	or	numerous	rows	of	data	can	be	updated	in	a	single
statement,	depending	on	what’s	needed.

Updating	the	Value	of	a	Single	Column
The	simplest	use	of	the	UPDATE	statement	is	to	update	a	single	column	in	a	table.	Either	a
single	row	of	data	or	numerous	records	can	be	updated	when	updating	a	single	column	in
a	table.

The	syntax	for	updating	a	single	column	follows:
update	table_name
set	column_name	=	‘value’
[where	condition];

The	following	example	updates	the	QTY	column	in	the	ORDERS_TBL	table	to	the	new
value	1	for	the	ORD_NUM	23A16,	which	you	have	specified	using	the	WHERE	clause:

UPDATE	AIRCRAFT
SET	SEATING	=	105
WHERE	AIRCRAFTCODE	=	‘BBB’;

(1	row(s)	affected)

The	following	example	is	identical	to	the	previous	example,	except	for	the	absence	of	the
WHERE	clause.	(Do	not	run	this.)

UPDATE	AIRCRAFT
SET	SEATING	=	105;

(40	row(s)	affected)

Notice	that	in	this	example,	40	rows	of	data	were	updated.	You	set	the	SEATING	to	105,
which	updated	the	seating	column	in	the	AIRCRAFT	table	for	all	rows	of	data.	Is	this
actually	what	you	wanted	to	do?	Perhaps	in	some	cases,	but	rarely	do	you	issue	an
UPDATE	statement	without	a	WHERE	clause.	An	easy	way	to	check	to	see	whether	you	are
going	to	be	updating	the	correct	dataset	is	to	write	a	SELECT	statement	for	the	same	table
with	your	WHERE	clause	that	you	are	using	in	the	INSERT	statement.	Then	you	can
physically	verify	that	these	are	the	rows	you	want	to	update.

Caution:	Test	Your	UPDATE	and	DELETE	Statements

Use	extreme	caution	when	using	the	UPDATE	statement	without	a	WHERE	clause.
The	target	column	is	updated	for	all	rows	of	data	in	the	table	if	conditions	are	not
designated	using	the	WHERE	clause.	In	most	situations,	the	use	of	the	WHERE	clause
with	a	DML	command	is	appropriate.

Updating	Multiple	Columns	in	One	or	More	Records
Next,	you	see	how	to	update	multiple	columns	with	a	single	UPDATE	statement.	Study	the
following	syntax:

update	table_name
set	column1	=	‘value’,
			[column2	=	‘value’,]
			[column3	=	‘value’]
[where	condition];

Notice	the	use	of	SET	in	this	syntax—there	is	only	one	SET,	but	multiple	columns.	Each
column	is	separated	by	a	comma.	You	should	start	to	see	a	trend	in	SQL.	The	comma
usually	separates	different	types	of	arguments	in	SQL	statements.	In	the	following	code,	a
comma	separates	the	two	columns	being	updated.	Again,	the	WHERE	clause	is	optional,
but	it’s	usually	necessary.
Click	here	to	view	code	image

UPDATE	AIRCRAFT
SET	SEATING	=	105,
				AIRCRAFTTYPE	=	‘AAA	AIRCRAFT’
WHERE	AIRCRAFTCODE	=	‘CCC’;

(1	row(s)	affected)

Note:	When	to	Use	the	SET	Keyword

The	SET	keyword	is	used	only	once	for	each	UPDATE	statement.	If	you	want	to
update	more	than	one	column,	use	a	comma	to	separate	the	columns	to	be	updated.

Later	in	this	book	you	learn	how	to	write	more	complex	statements	through	a	construct
known	as	a	JOIN	so	that	you	can	update	values	in	one	table	using	values	from	one	or
more	outside	tables.

Deleting	Data	from	Tables
The	DELETE	command	removes	entire	rows	of	data	from	a	table.	It	does	not	remove
values	from	specific	columns;	a	full	record,	including	all	columns,	is	removed.	Use	the
DELETE	statement	with	caution.

To	delete	a	single	record	or	selected	records	from	a	table,	use	the	DELETE	statement	with
the	following	syntax:

delete	from	table_name
[where	condition];

DELETE	FROM	AIRCRAFT

WHERE	AIRCRAFTCODE	=	‘CCC’;

(1	row(s)	affected)

Notice	the	use	of	the	WHERE	clause.	It	is	an	essential	part	of	the	DELETE	statement	if	you
want	to	remove	selected	rows	of	data	from	a	table.	You	rarely	issue	a	DELETE	statement
without	the	use	of	the	WHERE	clause.	If	you	do,	your	results	are	similar	to	the	following

example:
DELETE	FROM	AIRCRAFT;

(40	row(s)	affected)

Caution:	Don’t	Omit	the	WHERE	Clause

If	the	WHERE	clause	is	omitted	from	the	DELETE	statement,	all	rows	of	data	are
deleted	from	the	table.	As	a	general	rule,	always	use	a	WHERE	clause	with	the
DELETE	statement.	In	addition,	first	test	your	WHERE	clause	with	a	SELECT
statement.

Also,	remember	that	the	DELETE	command	might	have	a	permanent	effect	on	the
database.	Ideally,	it	should	be	possible	to	recover	erroneously	deleted	data	via	a
backup,	but	in	some	cases,	it	might	be	difficult	or	even	impossible	to	recover	data.
If	you	cannot	recover	data,	you	must	re-enter	it	into	the	database—trivial	if	dealing
with	only	one	row	of	data,	but	not	so	trivial	if	dealing	with	thousands	of	rows	of
data.	Hence,	the	importance	of	the	WHERE	clause.

The	temporary	table	that	was	populated	from	the	original	table	earlier	in	this	hour	can	be
useful	for	testing	the	DELETE	and	UPDATE	commands	before	issuing	them	against	the
original	table.	Also,	remember	the	technique	discussed	earlier	when	we	talked	about	the
UPDATE	command.	Write	a	SELECT	statement	using	the	same	WHERE	clause	that	you
want	to	use	for	the	DELETE	statement.	That	way	you	can	verify	that	the	data	being
deleted	is	actually	the	data	you	want.

Summary
You	have	learned	about	the	three	basic	commands	in	DML:	the	INSERT,	UPDATE,	and
DELETE	statements.	As	you	have	seen,	data	manipulation	is	a	powerful	part	of	SQL,
allowing	the	database	user	to	populate	tables	with	new	data,	update	existing	data,	and
delete	data.

An	important	lesson	when	updating	or	deleting	data	from	tables	in	a	database	is
sometimes	learned	when	neglecting	the	use	of	the	WHERE	clause.	Remember	that	the
WHERE	clause	places	conditions	on	a	SQL	statement—particularly	in	the	case	of	UDPATE
and	DELETE	operations,	when	you	specify	specific	rows	of	data	that	are	affected	during	a
transaction.	All	target	table	data	rows	are	affected	if	the	WHERE	clause	is	not	used,	which
could	be	disastrous	to	the	database.	Protect	your	data,	and	be	cautious	during	data
manipulation	operations.

Q&A
Q.	With	all	the	warnings	about	DELETE	and	UPDATE,	I’m	a	little	afraid	to	use
them.	If	I	accidentally	update	all	the	records	in	a	table	because	I	didn’t	use	the
WHERE	clause,	can	I	reverse	the	changes?

A.	There	is	no	reason	to	be	afraid	because	there	is	not	much	you	can	do	to	the	database

that	cannot	be	corrected;	although	considerable	time	and	work	might	be	involved.
Hour	6,	“Managing	Database	Transactions,”	discusses	the	concept	of	transactional
control,	which	allows	data	manipulation	operations	to	be	finalized	or	undone.

Q.	Is	the	INSERT	statement	the	only	way	to	enter	data	into	a	table?

A.	No,	but	remember	that	the	INSERT	statement	is	an	ANSI	standard.	The	various
implementations	have	their	tools	to	enter	data	into	tables.	For	example,	Oracle	has	a
SQL*Loader	utility,	whereas	SQL	Server	has	a	SQL	Server	Integration	Services
(SSIS)	utility.	Many	other	implementations	have	IMPORT	utilities	called	that	can
insert	data.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	Do	you	always	need	to	supply	a	column	list	for	the	table	that	you	use	an	INSERT
statement	on?

2.	What	would	you	do	if	you	did	not	want	to	enter	in	a	value	for	one	particular
column?

3.	Why	is	it	important	to	use	a	WHERE	clause	with	UPDATE	and	DELETE?

4.	What	would	be	an	easy	way	to	check	that	an	UPDATE	or	DELETE	will	affect	the
rows	that	you	want?

Exercises
1.	Use	an	imaginary	PASSENGER_TBL	with	the	following	structure:

Click	here	to	view	code	image
Column								data	type					(not)null
LAST_NAME					varchar2(20)			not	null
FIRST_NAME				varchar2(20)			not	null
SSN											char(9)								not	null
PHONE									number(10)					null

Include	the	following	data	already	in	the	table:
Click	here	to	view	code	image

LAST_NAME				FIRST_NAME						SSN											PHONE
–––—		––––-			–––					–––-
SMITH								JOHN												312456788					3174549923
ROBERTS						LISA												232118857					3175452321
SMITH								SUE													443221989					3178398712

PIERCE							BILLY											310239856					3176763990

What	would	happen	if	the	following	statements	were	run?

a.
Click	here	to	view	code	image

INSERT	INTO	PASSENGER_TBL	VALUES
(‘JACKSON’,	‘STEVE’,	‘313546078’,	‘3178523443’);

b.
Click	here	to	view	code	image

INSERT	INTO	PASSENGER_TBL	VALUES
(‘JACKSON’,	‘STEVE’,	‘313546078’,	‘3178523443’);

c.
Click	here	to	view	code	image

INSERT	INTO	PASSENGER_TBL	VALUES
(‘MILLER’,	‘DANIEL’,	‘230980012’,	NULL);

d.
Click	here	to	view	code	image

INSERT	INTO	PASSENGER_TBL	VALUES
(‘TAYLOR’,	NULL,	‘445761212’,	‘3179221331’);

e.
DELETE	FROM	PASSENGER_TBL;

f.
DELETE	FROM	PASSENGER_TBL
WHERE	LAST_NAME	=	‘SMITH’;

g.
DELETE	FROM	PASSENGER_TBL
WHERE	LAST_NAME	=	‘SMITH’
AND	FIRST_NAME	=	‘JOHN’;

h.
UPDATE	PASSENGER_TBL
SET	LAST_NAME	=	‘CONRAD’;

i.
UPDATE	PASSENGER_TBL
SET	LAST_NAME	=	‘CONRAD’
WHERE	LAST_NAME	=	‘SMITH’;

j.
UPDATE	PASSENGER_TBL
SET	LAST_NAME	=	‘CONRAD’,
FIRST_NAME	=	‘LARRY’;

k.
UPDATE	PASSENGER_TBL
SET	LAST_NAME	=	‘CONRAD’
FIRST_NAME	=	‘LARRY’

WHERE	SSN	=	‘313546078’;

2.	Use	the	AIRCRAFT	table	for	this	exercise.

Remove	the	two	aircrafts	that	were	added	earlier	in	the	chapter	with	the
AIRCRAFTCODE	of	'BBB'	and	'CCC'.

Add	the	following	products	to	the	product	table:
Click	here	to	view	code	image

AIRCRAFTCODE		AIRCRAFTTYPE													FREIGHTONLY						SEATING
A11											Lockheed	Superliner						0																600
B22											British	Aerospace	X11				0																350
C33											Boeing	Freightmaster					1																0

Write	DML	to	correct	the	seating	associated	with	the	Lockheed	Superliner.	The
correct	seating	should	be	500.

An	error	was	made	with	C33;	this	should	not	have	been	labeled	for	FREIGHTONLY
and	should	have	a	seating	capacity	of	25.	Write	the	DML	to	correct	this	entry.

Now	suppose	you	decide	to	cut	your	supported	aircraft	line.	Remove	the	three
products	you	just	added.

Before	you	executed	the	statements	to	remove	the	products	you	added,	what	should
you	have	done	to	ensure	that	you	delete	only	the	desired	rows?

Hour	6.	Managing	Database	Transactions

What	You’ll	Learn	in	This	Hour:

	The	definition	of	a	transaction

	The	commands	used	to	control	transactions

	The	syntax	and	examples	of	transaction	commands

	When	to	use	transactional	commands

	The	consequences	of	poor	transactional	control

In	manipulating	data	inside	of	a	database,	so	far	we	have	discussed	all-or-nothing
scenarios.	However,	in	more	complicated	processes	you	must	have	the	ability	to	isolate
changes	so	that	they	can	be	applied	or	rolled	back	to	an	original	state	at	will.	This	is	where
transactions	come	in.	Transactions	give	you	the	additional	flexibility	to	isolate	database
changes	into	discrete	batches	and	undo	those	changes	if	something	goes	wrong.	In	this
hour,	you	learn	the	concepts	behind	the	management	of	database	transactions,	how	to
implement	them,	and	how	to	properly	control	transactions.

What	Is	a	Transaction?
A	transaction	is	a	unit	of	work	that	is	performed	against	a	database.	Transactions	are	units
or	sequences	of	work	accomplished	in	a	logical	order,	whether	in	a	manual	fashion	by	a
user	or	automatically	by	some	sort	of	a	database	program.	In	a	relational	database	using
SQL,	transactions	are	accomplished	using	the	Data	Manipulation	Language	(DML)
commands	that	were	discussed	during	Hour	5,	“Manipulating	Data”	(INSERT,	UPDATE,
and	DELETE).	A	transaction	is	the	propagation	of	one	or	more	changes	to	the	database.
For	instance,	you	are	performing	a	transaction	if	you	perform	an	UPDATE	statement	on	a
table	to	change	an	individual’s	name.

A	transaction	can	either	be	one	DML	statement	or	a	group	of	statements.	When	managing
transactions,	each	designated	transaction	(group	of	DML	statements)	must	be	successful	as
one	entity,	or	none	of	them	will	be	successful.

The	following	list	describes	the	nature	of	transactions:

	All	transactions	have	a	beginning	and	an	end.

	A	transaction	can	be	saved	or	undone.

	If	a	transaction	fails	in	the	middle,	no	part	of	the	transaction	can	be	saved	to	the
database.

Controlling	Transactions
Transactional	control	is	the	capability	to	manage	various	transactions	that	might	occur
within	a	relational	database	management	system	(RDBMS).	When	you	speak	of
transactions,	you	are	referring	to	the	INSERT,	UPDATE,	and	DELETE	commands,	which
were	covered	during	the	previous	hour.

Note:	Transactions	Are	Implementation-Specific

Starting	or	executing	transactions	is	implementation-specific.	You	must	check	your
particular	implementation	for	how	to	begin	transactions.

When	a	transaction	is	executed	and	completes	successfully,	the	target	table	is	not
immediately	changed;	although,	it	might	appear	so	according	to	the	output.	When	a
transaction	successfully	completes,	transactional	control	commands	are	used	to	finalize
the	transaction,	either	saving	the	changes	made	by	the	transaction	to	the	database	or
reversing	the	changes	made	by	the	transaction.	During	the	execution	of	the	transaction,	the
information	is	stored	either	in	an	allocated	area	or	in	a	temporary	rollback	area	in	the
database.	All	changes	are	held	in	this	temporary	rollback	area	until	a	transactional	control
command	is	issued.	When	a	transactional	control	command	is	issued,	changes	are	either
made	to	the	database	or	discarded;	then	the	temporary	rollback	area	is	emptied.	Figure	6.1
illustrates	how	changes	are	applied	to	a	relational	database.

FIGURE	6.1	Rollback	area

Three	commands	are	used	to	control	transactions:

	COMMIT

	ROLLBACK

	SAVEPOINT

Each	of	these	is	discussed	in	detail	in	the	following	sections.

The	COMMIT	Command
The	COMMIT	command	is	the	transactional	command	used	to	save	changes	invoked	by	a
transaction	to	the	database.	The	COMMIT	command	saves	all	transactions	to	the	database
since	the	last	COMMIT	or	ROLLBACK	command.

The	syntax	for	this	command	is
commit	[work];

The	keyword	COMMIT	is	the	only	mandatory	part	of	the	syntax,	along	with	the	character
or	command	that	terminates	a	statement	according	to	each	implementation.	WORK	is	a
keyword	that	is	completely	optional;	its	only	purpose	is	to	make	the	command	user-
friendly.

In	the	following	example,	you	begin	by	creating	a	copy	of	the	AIRCRAFT	table	called	the
AIRCRAFT_TMP	table:
Click	here	to	view	code	image

SELECT	*	INTO	AIRCRAFT_TMP	FROM	AIRCRAFT;

(40	row(s)	affected)

Next,	you	delete	all	records	from	the	table	where	the	seating	for	the	aircraft	is	less	than
300:

DELETE	FROM	AIRCRAFT_TMP

WHERE	SEATING	<	300;

(26	row(s)	affected)

A	COMMIT	statement	is	issued	to	save	the	changes	to	the	database,	completing	the
transaction:

COMMIT;

Commit	complete.

If	you	issue	a	COMMIT	statement	and	use	SQL	Server,	you	get	the	following	error:
Click	here	to	view	code	image

The	COMMIT	TRANSACTION	request	has	no	corresponding	BEGIN	TRANSACTION.

This	is	because	SQL	Server	uses	an	auto-commit.	This	simply	means	that	it	treats	any
statement	as	a	transaction	and	automatically	issues	a	commit	if	successful	and	a	rollback	if
it	is	not.	To	change	this	you	need	to	issue	a	SET	IMPLICIT_TRANSACTIONS
command	and	set	the	mode	to	ON:
Click	here	to	view	code	image

SET	IMPLICIT_TRANSACTIONS	ON;

Command(s)	completed	successfully.

If	you	want	your	current	connection	to	go	back	to	auto-commit	mode,	then	you	would
simply	issue	the	same	statement	and	set	the	mode	to	OFF:
Click	here	to	view	code	image

SET	IMPLICIT_TRANSACTIONS	OFF;

Command(s)	completed	successfully.

Frequent	COMMIT	statements	in	large	loads	or	unloads	of	the	database	are	highly

recommended;	however,	too	many	COMMIT	statements	cause	the	job	to	take	a	lot	of	extra
time	to	complete.	Remember	that	all	changes	are	sent	to	the	temporary	rollback	area	first.
If	this	temporary	rollback	area	runs	out	of	space	and	cannot	store	information	about
changes	made	to	the	database,	the	database	will	probably	halt,	disallowing	further
transactional	activity.

You	should	realize	that	when	an	UPDATE,	INSERT,	or	DELETE	is	issued,	most	RDBMSs
use	a	form	of	transaction	in	the	background	so	that	if	the	query	is	canceled	or	runs	into	an
error,	changes	are	not	committed.	Therefore,	issuing	a	transaction	is	more	of	an	action	to
ensure	that	a	set	of	transactions	is	run	and	is	commonly	referred	to	as	a	unit	of	work.	In	a
real-world	example,	you	might	process	a	bank	transaction	at	an	ATM	with	a	client	wanting
to	withdraw	money.	In	such	a	situation,	you	need	to	both	insert	a	transaction	for	the
money	being	withdrawn	as	well	as	update	the	client’s	balance	to	reflect	the	new	total.
Obviously,	you	would	want	either	both	of	these	statements	to	be	successful	or	both	of
them	to	fail.	Otherwise,	the	system’s	data	integrity	is	compromised.	So	in	this	instance,
you	would	wrap	your	unit	of	work	in	a	transaction	to	ensure	that	you	could	control	the
outcome	of	both	statements.

Caution:	Some	Implementations	Treat	the	COMMIT	Differently

In	some	implementations,	transactions	are	committed	without	issuing	the	COMMIT
command;	instead,	merely	signing	out	of	the	database	causes	a	commit	to	occur.
However,	in	some	implementations,	such	as	MySQL,	after	you	perform	a	SET
TRANSACTION	command,	the	auto-commit	functionality	does	not	resume	until	it
has	received	a	COMMIT	or	ROLLBACK	statement.	In	addition,	in	other
implementations	such	as	Microsoft	SQL	Server,	statements	are	auto-committed
unless	a	transaction	is	specifically	used.	Ensure	that	you	check	the	documentation
of	your	particular	RDBMS	to	understand	exactly	how	transactions	and	committing
of	statements	are	handled.

The	ROLLBACK	Command
The	ROLLBACK	command	is	the	transactional	control	command	that	undoes	transactions
that	have	not	already	been	saved	to	the	database.	You	can	use	the	ROLLBACK	command
only	to	undo	transactions	since	the	last	COMMIT	or	ROLLBACK	command	was	issued.

The	syntax	for	the	ROLLBACK	command	follows:
rollback	[work];

Again,	as	in	the	COMMIT	statement,	the	WORK	keyword	is	an	optional	part	of	the
ROLLBACK	syntax.

For	the	rest	of	the	exercise,	if	you	use	SQL	Server,	you	need	to	turn	on
IMPLICIT_TRANSACTIONS	to	make	the	examples	easier	to	follow:
Click	here	to	view	code	image

SET	IMPLICIT_TRANSACTIONS	ON;

Command(s)	completed	successfully.

In	the	following	example,	you	begin	by	selecting	all	records	from	the	AIRCRAFT_TMP
table	since	the	previous	deletion	of	26	records:
Click	here	to	view	code	image

SELECT	*	FROM	AIRCRAFT_TMP;

AircraftCode	AircraftType																																							FreightOnly
Seating
––––	––––––––––––––––—	–––—	––-
330										Airbus	330	(200	&	300)
series																						0											335
742										Boeing	747-
200																																					0											420
743										Boeing	747-
300																																					0											420
744										Boeing	747-
400																																					0											400
747										Boeing	747	(all
series)																												0											420
74L										Boeing
747SP																																							0											314
772										Boeing	777-
200																																					0											375
773										Boeing	777-
300																																					0											420
777										Boeing
777																																									0											375
BBB										Boeing																																													0											NULL
CCC										Boeing																																													0											NULL
D10										McDonnell	Douglas
DC10																													0											399
L10										Lockheed	L/1011
TR																																	0											400
M11										McDonnell	Douglas	MD-
11																												0											323

(14	row(s)	affected)

Next,	you	update	the	table,	changing	the	seating	capacity	to	150	for	the	planes	that	have
NULL	for	their	seating	value:

UPDATE	AIRCRAFT_TMP
SET	SEATING=150
WHERE	SEATING	IS	NULL;
(2	row(s)	affected)

Notice	the	WHERE	clause	and	the	use	of	IS	instead	of	the	=	sign.	When	comparing	against
NULL	you	use	either	IS	NULL	or	IS	NOT	NULL	instead	of	the	traditional	=	sign.	If	you
perform	a	quick	query	on	the	table,	the	change	appears	to	have	occurred:
Click	here	to	view	code	image

SELECT	*	FROM	AIRCRAFT_TMP	WHERE	SEATING=150;

AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	–––––––––
BBB										Boeing																									0											150
CCC										Boeing																									0											150

(2	row(s)	affected)

Now	issue	the	ROLLBACK	statement	to	undo	the	last	change:
Click	here	to	view	code	image

rollback;

Command(s)	completed	successfully.

Finally,	verify	that	the	change	was	not	committed	to	the	database:
Click	here	to	view	code	image

SELECT	*	FROM	AIRCRAFT_TMP	WHERE	SEATING	IS	NULL;

AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	–––––––––
BBB										Boeing																									0											NULL
CCC										Boeing																									0											NULL

(2	row(s)	affected)

The	SAVEPOINT	Command
A	savepoint	is	a	point	in	a	transaction	where	you	can	roll	the	transaction	back	to	without
rolling	back	the	entire	transaction.

The	syntax	for	the	SAVEPOINT	command	is
savepoint	savepoint_name

This	command	serves	only	to	create	a	savepoint	among	transactional	statements.	The
ROLLBACK	command	undoes	a	group	of	transactions.	The	savepoint	is	a	way	of
managing	transactions	by	breaking	large	numbers	of	transactions	into	smaller,	more
manageable	groups.

Microsoft	SQL	Server	uses	a	slightly	different	syntax.	In	SQL	Server,	you	would	use	the
statement	SAVE	TRANSACTION	instead	of	SAVEPOINT,	as	is	shown	in	the	following
statement:
Click	here	to	view	code	image

save	transaction	savepoint_name

Otherwise,	the	procedure	works	exactly	as	the	other	implementations.

The	ROLLBACK	TO	SAVEPOINT	Command

The	syntax	for	rolling	back	to	a	savepoint	follows:
Click	here	to	view	code	image

ROLLBACK	TO	SAVEPOINT_NAME;

In	this	example,	you	delete	the	remaining	three	records	from	the	PRODUCTS_TMP	table.
You	want	to	issue	a	SAVEPOINT	command	before	each	delete,	so	you	can	issue	a
ROLLBACK	command	to	any	savepoint	at	any	time	to	return	the	appropriate	data	to	its
original	state.	In	SQL	Server	the	SAVEPOINT	command	is	actually	a	SAVE
TRANSACTION	command,	but	the	objective	is	still	the	same.	In	Oracle	you	would	use	the
following:
Click	here	to	view	code	image

SAVEPOINT	sp1;

Savepoint	created.
DELETE	FROM	AIRCRAFT_TMP	WHERE	AIRCRAFTCODE	=	‘BBB’;

1	row	deleted.
SAVEPOINT	sp2;

Savepoint	created.
DELETE	FROM	AIRCRAFT_TMP	WHERE	AIRCRAFTCODE	=	‘CCC’;

1	row	deleted.
SAVEPOINT	sp3;

Savepoint	created.
DELETE	FROM	AIRCRAFT_TMP	WHERE	AIRCRAFTCODE	=	‘777’;

1	row	deleted.

In	SQL	Server	the	syntax	would	be	slightly	different:
Click	here	to	view	code	image

SAVE	TRANSACTION	sp1;

Command(s)	completed	successfully.
DELETE	FROM	AIRCRAFT_TMP	WHERE	AIRCRAFTCODE	=	‘BBB’;

(1	row(s)	affected)
SAVE	TRANSACTION	sp2;

Command(s)	completed	successfully.
DELETE	FROM	AIRCRAFT_TMP	WHERE	AIRCRAFTCODE	=	‘CCC’;

(1	row(s)	affected)
SAVE	TRANSACTION	sp3;

Command(s)	completed	successfully.
DELETE	FROM	AIRCRAFT_TMP	WHERE	AIRCRAFTCODE	=	‘777’;

(1	row(s)	affected)

Note:	SAVEPOINT	Names	Need	to	Be	Unique

A	savepoint’s	name	must	be	unique	to	the	associated	group	of	transactions.
However,	it	can	have	the	same	name	as	a	table	or	other	object.	Refer	to	specific
implementation	documentation	for	more	details	on	naming	conventions.	Otherwise,
savepoint	names	are	a	matter	of	personal	preference	and	are	used	only	by	the
database	application	developer	to	manage	groups	of	transactions.

Now	that	the	three	deletions	have	taken	place,	say	you	change	your	mind	and	decide	to
issue	a	ROLLBACK	command	to	the	savepoint	that	you	identify	as	SP2.	Because	SP2	was
created	after	the	first	deletion,	the	last	two	deletions	are	undone.	In	Oracle	you	would	use

ROLLBACK	TO	sp2;

Rollback	complete.

In	SQL	Server	use	the	following:
Click	here	to	view	code	image

ROLLBACK	TRANSACTION	sp2;

Command(s)	completed	successfully.

Notice	that	only	the	first	deletion	took	place	because	you	rolled	back	to	SP2:
Click	here	to	view	code	image

SELECT	*	FROM	AIRCRAFT_TMP;

AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	–––––––––
330										Airbus	330	(200	&	300)	series		0											335
742										Boeing	747-200																	0											420
743										Boeing	747-300																	0											420
744										Boeing	747-400																	0											400
747										Boeing	747	(all	series)								0											420
74L										Boeing	747SP																			0											314
772										Boeing	777-200																	0											375

773										Boeing	777-300																	0											420
777										Boeing	777																					0											375
CCC										Boeing																									0											NULL
D10										McDonnell	Douglas	DC10									0											399
L10										Lockheed	L/1011	TR													0											400
M11										McDonnell	Douglas	MD-11								0											323

(13	row(s)	affected)

Remember,	the	ROLLBACK	command	by	itself	rolls	back	to	the	last	COMMIT	or
ROLLBACK	statement.	You	have	not	yet	issued	a	COMMIT,	so	all	deletions	are	undone,	as
in	the	following	example:
Click	here	to	view	code	image

ROLLBACK;

Command(s)	completed	successfully.

SELECT	*	FROM	AIRCRAFT_TMP;

AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	–––––––––
330										Airbus	330	(200	&	300)	series		0											335
742										Boeing	747-200																	0											420
743										Boeing	747-300																	0											420
744										Boeing	747-400																	0											400
747										Boeing	747	(all	series)								0											420
74L										Boeing	747SP																			0											314
772										Boeing	777-200																	0											375
773										Boeing	777-300																	0											420
777										Boeing	777																					0											375
BBB										Boeing																									0											NULL
CCC										Boeing																									0											NULL
D10										McDonnell	Douglas	DC10									0											399
L10										Lockheed	L/1011	TR													0											400
M11										McDonnell	Douglas	MD-11								0											323

(14	row(s)	affected)

Now	if	you	use	SQL	Server,	you	want	to	put	the	database	into	the	standard	auto-commit
setting	by	issuing	the	following	command:
Click	here	to	view	code	image

SET	IMPLICIT_TRANSACTIONS	ON;

Command(s)	completed	successfully.

The	RELEASE	SAVEPOINT	Command

The	RELEASE	SAVEPOINT	command	removes	a	savepoint	that	you	have	created.	After
a	savepoint	has	been	released,	you	can	no	longer	use	the	ROLLBACK	command	to	undo
transactions	performed	since	the	savepoint.	You	might	want	to	issue	a	RELEASE
SAVEPOINT	command	to	avoid	the	accidental	rollback	to	a	savepoint	that	is	no	longer
needed:
Click	here	to	view	code	image

RELEASE	SAVEPOINT	savepoint_name;

Microsoft	SQL	Server	does	not	support	the	RELEASE	SAVEPOINT	syntax;	instead,	all
SAVEPOINTs	are	released	when	the	transaction	is	completed.	This	is	either	by	the
COMMIT	or	the	ROLLBACK	of	the	transaction.	Remember	this	point	when	you	structure

your	transactions	within	your	environment.

The	SET	TRANSACTION	Command
You	can	use	the	SET	TRANSACTION	command	to	initiate	a	database	transaction.	This
command	specifies	characteristics	for	the	transaction	that	follows.	For	example,	you	can
specify	a	transaction	to	be	read-only	or	read/write:

SET	TRANSACTION	READ	WRITE;
SET	TRANSACTION	READ	ONLY;

READ	WRITE	is	used	for	transactions	that	are	allowed	to	query	and	manipulate	data	in
the	database.	READ	ONLY	is	used	for	transactions	that	require	query-only	access.	READ
ONLY	is	useful	for	generating	reports	and	for	increasing	the	speed	at	which	transactions
are	accomplished.	If	a	transaction	is	READ	WRITE,	the	database	must	create	locks	on
database	objects	to	maintain	data	integrity	if	multiple	transactions	are	happening
concurrently.	If	a	transaction	is	READ	ONLY,	no	locks	are	established	by	the	database,
thereby	improving	transaction	performance.

Poor	Transactional	Control
Poor	transactional	control	can	hurt	database	performance	and	even	bring	the	database	to	a
halt.	Repeated	poor	database	performance	might	be	due	to	a	lack	of	transactional	control
during	large	inserts,	updates,	or	deletes.	Large	batch	processes	also	cause	temporary
storage	for	rollback	information	to	grow	until	either	a	COMMIT	or	a	ROLLBACK	command
is	issued.

When	a	COMMIT	is	issued,	rollback	transactional	information	is	written	to	the	target	table,
and	the	rollback	information	in	temporary	storage	is	cleared.	When	a	ROLLBACK	is
issued,	no	changes	are	made	to	the	database,	and	the	rollback	information	in	the	temporary
storage	is	cleared.	If	neither	a	COMMIT	nor	ROLLBACK	is	issued,	the	temporary	storage
for	rollback	information	continues	to	grow	until	there	is	no	more	space	left,	thus	forcing
the	database	to	stop	all	processes	until	space	is	freed.	Although	space	usage	is	ultimately
controlled	by	the	database	administrator	(DBA),	a	lack	of	transactional	control	can	still
cause	database	processing	to	stop,	sometimes	forcing	the	DBA	to	take	action	that	might
consist	of	killing	running	user	processes.

Summary
During	this	hour,	you	learned	the	preliminary	concepts	of	transactional	management
through	the	use	of	three	transactional	control	commands:	COMMIT,	ROLLBACK,	and
SAVEPOINT.	You	use	COMMIT	to	save	a	transaction	to	the	database.	You	use	ROLLBACK
to	undo	a	transaction	you	performed.	You	use	SAVEPOINT	to	break	a	transaction	or
transactions	into	groups,	which	allows	you	to	roll	back	to	specific	logical	points	in
transaction	processing.

Remember	that	you	should	frequently	use	the	COMMIT	and	ROLLBACK	commands	when
running	large	transactional	jobs	to	keep	space	free	in	the	database.	Also,	keep	in	mind	that
these	transactional	commands	are	used	only	with	the	three	DML	commands	(INSERT,

UPDATE,	and	DELETE).

Q&A
Q.	Is	it	necessary	to	issue	a	commit	after	every	INSERT	statement?

A.	No,	absolutely	not.	Some	systems	such	as	SQL	Server	would	automatically	issue	a
commit	after	your	INSERT	statement.	However,	if	you	have	large	inserts	or	updates,
you	may	consider	doing	them	in	batches	as	large	updates	to	tables	could	negatively
affect	performance.

Q.	How	does	the	ROLLBACK	command	undo	a	transaction?

A.	The	ROLLBACK	command	clears	all	changes	from	the	rollback	area.

Q.	If	I	issue	a	transaction	and	99%	of	the	transaction	completes	but	the	other	1%
errs,	can	I	redo	only	the	error	part?

A.	No,	the	entire	transaction	must	succeed;	otherwise,	data	integrity	is	compromised.
Therefore,	you	should	always	perform	a	ROLLBACK	on	an	error	unless	there	is	a
compelling	reason	not	to.

Q.	A	transaction	is	permanent	after	I	issue	a	COMMIT,	but	can	I	change	data	with
an	UPDATE	command?

A.	The	word	permanent	used	in	this	matter	means	that	it	is	now	a	part	of	the	database.
You	can	always	use	the	UPDATE	statement	to	make	modifications	or	corrections	to
the	data.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	True	or	false:	If	you	have	committed	several	transactions,	have	several	more
transactions	that	have	not	been	committed,	and	issue	a	ROLLBACK	command,	all
your	transactions	for	the	same	session	are	undone.

2.	True	or	false:	A	SAVEPOINT	or	SAVE	TRANSACTION	command	actually	saves
transactions	after	a	specified	number	of	transactions	have	executed.

3.	Briefly	describe	the	purpose	of	each	one	of	the	following	commands:	COMMIT,
ROLLBACK,	and	SAVEPOINT.

4.	What	are	some	differences	in	the	implementation	of	transactions	in	Microsoft	SQL

Server?

5.	What	are	some	performance	implications	when	using	transactions?

6.	When	using	several	SAVEPOINT	or	SAVE	TRANSACTION	commands,	can	you
roll	back	more	than	one?

Exercises
1.	Take	the	following	transactions	and	create	a	SAVEPOINT	or	a	SAVE
TRANSACTION	command	after	the	first	three	transactions.	Then	create	a
ROLLBACK	statement	for	your	savepoint	at	the	end.	Try	to	determine	what	the
PASSENGERS	table	will	look	like	after	you	are	done.

Click	here	to	view	code	image
INSERT	INTO	PASSENGERS(FIRSTNAME,LASTNAME,BIRTHDATE,COUNTRYCODE)
VALUES(‘George’,‘Allwell’,‘1981-03-23’,‘US’);
INSERT	INTO	PASSENGERS(FIRSTNAME,LASTNAME,BIRTHDATE,COUNTRYCODE)
VALUES(‘Steve’,‘Schuler’,‘1974-09-11’,‘US’);
INSERT	INTO	PASSENGERS(FIRSTNAME,LASTNAME,BIRTHDATE,COUNTRYCODE)
VALUES(‘Mary’,‘Ellis’,‘1990-11-12’,‘US’);
UPDATE	PASSENGERS	SET	FIRSTNAME=‘Peter’	WHERE	LASTNAME=‘Allwell’
AND	BIRTHDATE=‘1981-03-23’;
UPDATE	PASSENGERS	SET	COUNTRYCODE=‘AU’	WHERE	FIRSTNAME=‘Mary’
AND	LASTNAME=‘Ellis’;
UPDATE	PASSENGERS	SET	BIRTHDATE=‘1964-09-11’	WHERE	LASTNAME=‘Schuler’;

2.	Take	the	following	group	of	transactions	and	create	a	savepoint	after	the	first
transactions.	Then	place	a	COMMIT	statement	at	the	end,	followed	by	a	ROLLBACK
statement	to	your	savepoint.	What	do	you	think	should	happen?

Click	here	to	view	code	image
UPDATE	PASSENGERS	SET	BIRTHDATE=‘Stephen’	WHERE	LASTNAME=‘Schuler’;
DELETE	FROM	PASSENGERS	WHERE	LASTNAME=‘Allwell’	AND	BIRTHDATE=‘1981-03-
23’;
DELETE	FROM	PASSENGERS	WHERE	LASTNAME=‘Schuler’	AND	BIRTHDATE=‘1964-09-11;
DELETE	FROM	PASSENGERS	WHERE		LASTNAME=‘Ellis’	AND	BIRTHDATE=‘1990-11-12’;

Part	III:	Getting	Effective	Results	from
Queries

Hour	7.	Introduction	to	Database	Queries

What	You’ll	Learn	in	This	Hour:

	Definition	of	a	database	query

	How	to	use	the	SELECT	statement

	Adding	conditions	to	queries	using	the	WHERE	clause

	Using	column	aliases

	Selecting	data	from	another	user’s	table

In	this	hour,	you	learn	about	database	queries,	which	involve	the	use	of	the	SELECT
statement.	The	SELECT	statement	is	the	most	frequently	used	of	all	SQL	commands	after
a	database’s	establishment.	The	SELECT	statement	enables	you	to	view	data	that	is	stored
in	the	database.

The	SELECT	Statement
The	SELECT	statement,	which	is	known	as	the	Data	Query	Language	(DQL)	command,	is
the	basic	statement	used	to	construct	database	queries.	A	query	is	an	inquiry	into	the
database	to	extract	data	from	the	database	in	a	readable	format	according	to	the	user’s
request.	For	instance,	in	the	sample	database	where	you	have	a	passengers	table,	you
might	issue	an	SQL	statement	that	returns	the	oldest	passengers	on	a	flight	so	that	you
could	have	them	board	first.	This	request	to	the	database	for	usable	passenger	information
is	a	typical	query	that	can	be	performed	in	a	relational	database.

The	SELECT	statement	is	by	far	one	of	the	most	powerful	statements	in	SQL.	The
SELECT	statement	is	not	a	standalone	statement,	which	means	that	one	or	more	additional
clauses	(elements)	are	required	for	a	syntactically	correct	query.	In	addition	to	the	required
clauses,	optional	clauses	increase	the	overall	functionality	of	the	SELECT	statement.	The
FROM	clause	is	a	mandatory	clause	and	must	always	be	used	with	the	SELECT	statement.

Four	keywords,	or	clauses,	are	valuable	parts	of	a	SELECT	statement:

	SELECT

	FROM

	WHERE

	ORDER	BY

Each	of	these	clauses	is	covered	in	detail	in	the	following	sections.

The	SELECT	Clause
The	SELECT	statement	is	used	with	the	FROM	clause	to	extract	data	from	the	database	in
an	organized,	readable	format.	The	SELECT	clause	of	the	query	is	for	selecting	the	data
you	want	to	see	according	to	the	columns	in	which	they	are	stored	in	a	table.

The	syntax	for	a	simple	SELECT	statement	follows:
Click	here	to	view	code	image

SELECT	[*	|	ALL	|	DISTINCT	COLUMN1,	COLUMN2]
FROM	TABLE1	[,	TABLE2];

The	SELECT	clause	in	a	query	is	followed	by	a	comma	delimited	list	of	column	names
that	you	want	displayed	as	part	of	the	query	output.	The	asterisk	(*)	denotes	that	all
columns	in	a	table	should	display	as	part	of	the	output.	Check	your	particular
implementation	for	its	usage.	The	ALL	option	displays	all	values	for	a	column,	including
duplicates.	The	DISTINCT	option	suppresses	duplicate	rows	from	displaying	in	the
output.	The	ALL	option	is	an	inferred	option.	It	is	thought	of	as	the	default;	therefore,	it
does	not	necessarily	need	to	be	used	in	the	SELECT	statement.	The	FROM	keyword	is
followed	by	a	list	of	one	or	more	tables	from	which	you	want	to	select	data.	Notice	that
the	columns	following	the	SELECT	clause	are	separated	by	commas,	as	is	the	table	list
following	the	FROM	clause.

Note:	Constructing	Lists

Commas	separate	arguments	in	a	list	in	SQL	statements.	Arguments	are	values	that
are	either	required	or	optional	to	the	syntax	of	a	SQL	statement	or	command.	Some
common	lists	include	lists	of	columns	in	a	query,	lists	of	tables	to	be	selected	from
in	a	query,	values	to	be	inserted	into	a	table,	and	values	grouped	as	a	condition	in	a
query’s	WHERE	clause.

The	basic	capabilities	of	the	SELECT	statement	are	explored	in	the	following	examples.
First,	perform	a	simple	query	from	our	AIRCRAFT_TMP	table	from	the	previous	chapter:
Click	here	to	view	code	image

SELECT	*	FROM	AIRCRAFT_TMP;

AircraftCode	AircraftType																																							FreightOnly
Seating
––––	––––––––––––––––—	–––—	––-
330										Airbus	330	(200	&	300)
series																						0											335
742										Boeing	747-
200																																					0											420
743										Boeing	747-
300																																					0											420
744										Boeing	747-
400																																					0											400
747										Boeing	747	(all
series)																												0											420
74L										Boeing
747SP																																							0											314
772										Boeing	777-

200																																					0											375
773										Boeing	777-
300																																					0											420
777										Boeing
777																																									0											375
BBB										Boeing																																													0											NULL
CCC										Boeing																																													0											NULL
D10										McDonnell	Douglas
DC10																													0											399
L10										Lockheed	L/1011
TR																																	0											400
M11										McDonnell	Douglas	MD-
11																												0											323

(14	row(s)	affected)

The	asterisk	represents	all	columns	in	the	table,	which,	as	you	can	see,	display	in	the	form
AircraftCode,	AircraftType,	FreightOnly,	and	Seating.	Each	column	in
the	output	displays	in	the	order	that	it	appears	in	the	table.	There	are	14	records	in	this
table,	identified	by	the	feedback	(14	row(s)	affected).	This	feedback	differs
among	implementations;	for	example,	another	feedback	for	the	same	query	would	be	14
rows	selected.	Although	the	asterisk	is	a	helpful	piece	of	shorthand	when	writing
SQL	queries,	it	is	considered	best	practice	to	explicitly	name	the	columns	that	you	are
returning.

Now	select	data	from	another	table,	PASSENGERS.	List	the	column	name	after	the
SELECT	keyword	to	display	only	one	column	in	the	table:
Click	here	to	view	code	image

SELECT	COUNTRYCODE	FROM	PASSENGERS;

CountryCode
–––—
CA
US
GB
US
US
US
US
GB
US
CA
US
GB
US
US
US
.
.
.

(135001	row(s)	affected)

As	you	can	see,	this	returned	135001	rows	of	country	codes	here,	and	by	looking	at	the
sample	of	the	results	here,	it	is	evident	that	there	is	a	lot	of	duplication	in	the	results.	The
DISTINCT	option	is	used	in	the	following	statement	to	suppress	the	display	of	duplicate
records.	Notice	that	there	are	only	seven	rows	in	this	example.

Click	here	to	view	code	image
SELECT	DISTINCT	COUNTRYCODE
FROM	PASSENGERS;
CountryCode
–––—
US
FR
MX
JP
DE
CA
GB

(7	row(s)	affected)

You	can	also	use	DISTINCT	with	parentheses	enclosing	the	associated	column,	as
follows.	Parentheses	are	often	used	in	SQL—as	well	as	many	other	languages—to
improve	readability.
Click	here	to	view	code	image

SELECT	DISTINCT(COUNTRYCODE)
FROM	PASSENGERS;
CountryCode
–––—
US
FR
MX
JP
DE
CA
GB

(7	row(s)	affected)

The	FROM	Clause
The	FROM	clause	must	be	used	with	the	SELECT	statement.	It	is	a	required	element	for
any	query.	The	FROM	clause’s	purpose	is	to	tell	the	database	what	table(s)	to	access	to
retrieve	the	wanted	data	for	the	query.	The	FROM	clause	may	contain	one	or	more	tables.
The	FROM	clause	must	always	list	at	least	one	table.

The	syntax	for	the	FROM	clause	follows:
from	table1	[,	table2]

The	WHERE	Clause
A	condition	is	part	of	a	query	that	displays	selective	information	as	specified	by	the	user.
The	value	of	a	condition	is	either	TRUE	or	FALSE,	thereby	limiting	the	data	received	from
the	query.	The	WHERE	clause	places	conditions	on	a	query	by	eliminating	rows	that	would
normally	be	returned	by	a	query	without	conditions.

You	can	have	more	than	one	condition	in	the	WHERE	clause.	If	more	than	one	condition
exists,	the	conditions	connect	by	the	AND	and	OR	operators,	which	are	discussed	during
Hour	8,	“Using	Operators	to	Categorize	Data.”	As	you	also	learn	during	the	next	hour,
several	conditional	operators	exist	that	can	specify	conditions	in	a	query.	This	hour	deals

with	only	a	single	condition	for	each	query.

An	operator	is	a	character	or	keyword	in	SQL	that	combines	elements	in	a	SQL	statement.

The	syntax	for	the	WHERE	clause	follows:
Click	here	to	view	code	image

select	[all	|	*	|	distinct	column1,	column2]
from	table1	[,	table2]
where	[condition1	|	expression1]
[and|OR	condition2	|	expression2]

The	following	is	a	simple	SELECT	statement	without	conditions	specified	by	the	WHERE
clause:
Click	here	to	view	code	image

SELECT	AIRPORTID,	AIRPORTNAME,	CITY,	COUNTRYCODE
FROM	AIRPORTS;

AIRPORTID			AIRPORTNAME																				CITY																							COUNTRYCODE
–––—	––––––––––	––––––––—	–––
1											Bamiyan																								Bamiyan																				AF
2											Bost																											Bost																							AF
3											Chakcharan																					Chakcharan																	AF
4											Darwaz																									Darwaz																					AF
5											Faizabad																							Faizabad																			AF
6											Farah																										Farah																						AF
7											Gardez																									Gardez																					AF
8											Ghazni																									Ghazni																					AF
9											Herat																										Herat																						AF
10										Jalalabad																						Jalalabad																		AF
.
.
.

(9185	row(s)	affected)

Obviously,	you	may	not	need	all	9185	rows	of	airports,	so	you	need	to	trim	that	listing
down.	Now	add	a	condition	for	the	same	query	so	that	you	can	see	only	the	airports	in
Hungary:
Click	here	to	view	code	image

SELECT	AIRPORTID,	AIRPORTNAME,	CITY,	COUNTRYCODE
FROM	AIRPORTS
WHERE	COUNTRYCODE=‘HU’;

AIRPORTID			AIRPORTNAME																				CITY																										COUNTRYCODE
–––—	––––––––––	–––––––––—	–––
7695								Debrecen																							Debrecen																						HU
7696								Deli	Railway																			Budapest																						HU
7697								Ferihegy																							Budapest																						HU
7698								Gyor-Per																							Per																											HU
7699								Miskolc																								Miskolc																							HU
7700								Pecs-Pogany																				Pecs																										HU
7701								Saarmelleek/balaton												Saarmelleek																			HU

(7	row(s)	affected)

The	only	records	that	display	are	those	where	the	country	code	is	‘HU,’	which	is	Hungary.

Conditions	do	not	always	have	to	be	exact	matches	of	exact	terms.	Sometimes,	you	want	a

range	of	values.	The	following	query	displays	the	passenger	names	and	birthdates	that
have	passenger	identification	numbers	greater	than	134995:
Click	here	to	view	code	image

SELECT	PASSENGERID,	FIRSTNAME,	LASTNAME,	BIRTHDATE
FROM	PASSENGERS
WHERE	PASSENGERID>134995;

PASSENGERID	FIRSTNAME														LASTNAME																		BirthDate
–––—	–––––––-	––-	–––––—	–––––––-
134996						Mozell																	Scullen																			1962-04-07
00:00:00.000
134997						Lien																			Filippo																			1951-04-10
00:00:00.000
134998						Ann																				Cornford																		1978-06-06
00:00:00.000
134999						Nita																			Stott																					1971-04-16
00:00:00.000
135000						Maddie																	Guzman																				1987-03-01
00:00:00.000
135001						John																			Doe																							1990-10-12
00:00:00.000

(6	row(s)	affected)

The	ORDER	BY	Clause
You	usually	want	your	output	to	have	some	kind	of	order.	Data	can	be	sorted	by	using	the
ORDER	BY	clause.	The	ORDER	BY	clause	arranges	the	results	of	a	query	in	a	listing
format	you	specify.	The	default	ordering	of	the	ORDER	BY	clause	is	an	ascending	order;
the	sort	displays	in	the	order	A–Z	if	it’s	sorting	output	names	alphabetically.	A	descending
order	for	alphabetical	output	would	be	displayed	in	the	order	Z–A.	Ascending	order	for
output	for	numeric	values	between	1	and	9	would	be	displayed	1–9;	descending	order
would	be	displayed	as	9–1.

The	syntax	for	the	ORDER	BY	clause	is	as	follows:
Click	here	to	view	code	image

select	[all	|	*	|	distinct	column1,	column2]
from	table1	[,	table2]
where	[condition1	|	expression1]
[and|OR	condition2	|	expression2]
ORDER	BY	column1|integer	[ASC|DESC]

Begin	your	exploration	of	the	ORDER	BY	clause	with	an	extension	of	one	of	the	previous
statements,	as	follows.	You	order	the	passenger	list	in	ascending	order	or	alphabetical
order.	Note	the	use	of	the	ASC	option.	You	can	specify	ASC	after	any	column	in	the
ORDER	BY	clause.
Click	here	to	view	code	image

SELECT	PASSENGERID,	FIRSTNAME,	LASTNAME,	BIRTHDATE
FROM	PASSENGERS
WHERE	PASSENGERID>134995
ORDER	BY	LASTNAME	ASC;

PASSENGERID	FIRSTNAME														LASTNAME																		BirthDate
–––—	–––––––-	––-	–––––—	–––––––-

134998						Ann																				Cornford																		1978-06-06
00:00:00.000
135001						John																			Doe																							1990-10-12
00:00:00.000
134997						Lien																			Filippo																			1951-04-10
00:00:00.000
135000						Maddie																	Guzman																				1987-03-01
00:00:00.000
134996						Mozell																	Scullen																			1962-04-07
00:00:00.000
134999						Nita																			Stott																					1971-04-16
00:00:00.000

(6	row(s)	affected)

Note:	Rules	for	Sorting

SQL	sorts	are	ASCII,	character-based	sorts.	The	numeric	values	0–9	would	be
sorted	as	character	values	and	sorted	before	the	characters	A–Z.	Because	numeric
values	are	treated	like	characters	during	a	sort,	an	example	list	of	numeric	values
would	be	sorted	in	the	following	order:	1,	12,	2,	255,	3.

You	can	use	DESC,	as	in	the	following	statement,	if	you	want	the	same	output	to	be	sorted
in	reverse	alphabetical	order:
Click	here	to	view	code	image

SELECT	PASSENGERID,	FIRSTNAME,	LASTNAME,	BIRTHDATE
FROM	PASSENGERS
WHERE	PASSENGERID>134995
ORDER	BY	LASTNAME	DESC;

PASSENGERID	FIRSTNAME														LASTNAME																		BirthDate
–––—	–––––––-	––––––––-	–––––––
134999						Nita																			Stott																					1971-04-16
00:00:00.000
134996						Mozell																	Scullen																			1962-04-07
00:00:00.000
135000						Maddie																	Guzman																				1987-03-01
00:00:00.000
134997						Lien																			Filippo																			1951-04-10
00:00:00.000
135001						John																			Doe																							1990-10-12
00:00:00.000
134998						Ann																				Cornford																		1978-06-06
00:00:00.000

(6	row(s)	affected)

Tip:	There	Is	a	Default	for	Ordering

Because	ascending	order	for	output	is	the	default,	you	do	not	have	to	specify	ASC.

Shortcuts	do	exist	in	SQL.	A	column	listed	in	the	ORDER	BY	clause	can	be	abbreviated
with	an	integer.	An	integer	is	a	substitution	for	the	actual	column	name	(an	alias	for	the
purpose	of	the	sort	operation),	identifying	the	position	of	the	column	after	the	SELECT
keyword.

An	example	of	using	an	integer	as	an	identifier	in	the	ORDER	BY	clause	follows:
Click	here	to	view	code	image

SELECT	PASSENGERID,	FIRSTNAME,	LASTNAME,	BIRTHDATE
FROM	PASSENGERS
WHERE	PASSENGERID>134995
ORDER	BY	3	ASC;

PASSENGERID	FIRSTNAME														LASTNAME																		BirthDate
–––—	–––––––-	––––––––-	–––––––-
134998						Ann																				Cornford																		1978-06-06
00:00:00.000
135001						John																			Doe																							1990-10-12
00:00:00.000
134997						Lien																			Filippo																			1951-04-10
00:00:00.000
135000						Maddie																	Guzman																				1987-03-01
00:00:00.000
134996						Mozell																	Scullen																			1962-04-07
00:00:00.000
134999						Nita																			Stott																					1971-04-16
00:00:00.000

(6	row(s)	affected)

In	this	query,	the	integer	3	represents	the	column	LASTNAME.	The	integer	1	represents
the	PASSENGERID	column,	2	represents	the	FIRSTNAME	column,	and	so	on.

You	can	order	by	multiple	columns	in	a	query,	using	either	the	column	name	or	the
associated	number	of	the	column	in	the	SELECT:

ORDER	BY	1,2,3

Columns	in	an	ORDER	BY	clause	are	not	required	to	appear	in	the	same	order	as	the
associated	columns	following	the	SELECT,	as	shown	by	the	following	example:

ORDER	BY	1,3,2

The	order	in	which	the	columns	are	specified	within	the	ORDER	BY	clause	is	the	manner
in	which	the	ordering	process	is	done.	So	the	statement	that	follows	first	orders	by	the
LASTNAME	column	and	then	by	the	FIRSTNAME	column:

ORDER	BY	LASTNAME,FIRSTNAME

Case-Sensitivity
Case-sensitivity	is	an	important	concept	to	understand	when	coding	with	SQL.	Typically,
SQL	commands	and	keywords	are	not	case-sensitive,	which	enables	you	to	enter	your
commands	and	keywords	in	either	uppercase	or	lowercase—whatever	you	prefer.	The	case
may	also	be	mixed	(both	uppercase	and	lowercase	for	a	single	word	or	statement),	which
is	often	referred	to	as	CamelCase.	See	Hour	5,	“Manipulating	Data,”	on	case-sensitivity.

Collation	is	the	mechanism	that	determines	how	the	relational	database	management
system	(RDBMS)	interprets	data.	This	includes	methods	of	ordering	the	data	as	well	as
case-sensitivity.	Case-sensitivity	in	relation	to	your	data	is	important	because	it	determines
how	your	WHERE	clauses,	among	other	things,	interpret	matches.	You	need	to	check	with
your	specific	RDBMS	implementation	to	determine	what	the	default	collation	is	on	your

system.	Some	systems,	such	as	MySQL	and	Microsoft	SQL	Server,	have	a	default
collation	that	is	case-insensitive.	This	means	that	it	matches	strings	without	considering
their	case.	Other	systems,	such	as	Oracle,	have	a	default	collation	that	is	case-sensitive.
This	means	that	strings	are	matched	with	case	taken	into	account.	Because	case-sensitivity
is	a	factor	at	the	database	level,	its	importance	as	a	factor	in	your	queries	varies.

Caution:	Use	a	Standard	Case	in	Your	Queries

It	is	a	good	practice	to	use	the	same	case	in	your	query	as	the	data	that	is	stored	in
your	database.	Moreover,	it	is	good	to	implement	a	corporate	policy	to	ensure	that
data	entry	is	handled	in	the	same	manner	across	an	enterprise.

Case-sensitivity	is,	however,	a	factor	in	maintaining	data	consistency	within	your
RDBMS.	For	instance,	your	data	would	not	be	consistent	if	you	arbitrarily	enter	your	data
using	random	case:

	SMITH

	Smith

	smith

If	the	last	name	is	stored	as	smith	and	you	issue	a	query	as	follows	in	an	RDBMS	such
as	Oracle,	which	is	case-sensitive,	no	rows	return:
Click	here	to	view	code	image

SELECT	*
FROM	PASSENGERS
WHERE	LASTNAME	=	‘SMITH’;
SELECT	*
FROM	PASSENGERS
WHERE	UPPER(LASTNAME)	=	UPPER(‘Smith’);

Fundamentals	of	Query	Writing
This	section	provides	several	examples	of	queries	based	on	the	concepts	that	have	been
discussed.	It	begins	with	the	simplest	query	you	can	issue	and	builds	upon	the	initial	query
progressively.	You	use	the	EMPLOYEE_TBL	table.

Select	all	records	from	a	table	and	display	all	columns:
SELECT	*	FROM	EMPLOYEE_TBL;

Select	all	records	from	a	table	and	display	a	specified	column:
SELECT	EMP_ID
FROM	EMPLOYEE_TBL;

Select	all	records	from	a	table	and	display	a	specified	column.	You	can	enter	code	on	one
line	or	use	a	carriage	return	as	wanted:
Click	here	to	view	code	image

SELECT	EMP_ID	FROM	EMPLOYEE_TBL;

Select	all	records	from	a	table	and	display	multiple	columns	separated	by	commas:
SELECT	EMP_ID,	LAST_NAME

FROM	EMPLOYEE_TBL;

Display	data	for	a	given	condition:
SELECT	EMP_ID,	LAST_NAME
FROM	EMPLOYEE_TBL
WHERE	EMP_ID	=	‘333333333’;

Caution:	Ensure	That	Your	Queries	Are	Constrained

When	selecting	all	rows	of	data	from	a	large	table,	the	results	could	return	a
substantial	amount	of	data.	In	highly	transactional	databases	this	can	cause	a
slowdown	in	performance	not	only	of	the	query	that	is	executed	but	also	of	the
system.	Use	WHERE	clauses	whenever	possible	to	work	on	the	smallest	subset	of
your	data	as	possible.	This	will	limit	the	affect	your	query	has	on	precious	database
resources.

Display	data	for	a	given	condition	and	sort	the	output:
SELECT	EMP_ID,	LAST_NAME
FROM	EMPLOYEE_TBL
WHERE	CITY	=	‘INDIANAPOLIS’
ORDER	BY	EMP_ID;

Display	data	for	a	given	condition	and	sort	the	output	on	multiple	columns,	with	one
column	sorted	in	reverse	order.	In	the	instance	that	follows,	the	EMP_ID	column	is	sorted
in	ascending	order,	whereas	the	LAST_NAME	column	is	sorted	in	descending	order:
Click	here	to	view	code	image

SELECT	EMP_ID,	LAST_NAME
FROM	EMPLOYEE_TBL
WHERE	CITY	=	‘INDIANAPOLIS’
ORDER	BY	EMP_ID,	LAST_NAME	DESC;

Display	data	for	a	given	condition	and	sort	the	output	using	an	integer	in	the	place	of	the
spelled-out	column	name:

SELECT	EMP_ID,	LAST_NAME
FROM	EMPLOYEE_TBL
WHERE	CITY	=	‘INDIANAPOLIS’
ORDER	BY	1;

Display	data	for	a	given	condition	and	sort	the	output	by	multiple	columns	using	integers.
The	order	of	the	columns	in	the	sort	is	different	from	their	corresponding	order	after	the
SELECT	keyword:

SELECT	EMP_ID,	LAST_NAME
FROM	EMPLOYEE_TBL
WHERE	CITY	=	‘INDIANAPOLIS’
ORDER	BY	2,	1;

Counting	the	Records	in	a	Table
You	can	issue	a	simple	query	on	a	table	to	get	a	quick	count	of	the	number	of	records	in
the	table	or	the	number	of	values	for	a	column	in	the	table.	A	count	is	accomplished	by	the
function	COUNT.	Although	functions	are	not	discussed	until	later	in	this	book,	this
function	should	be	introduced	here	because	it	is	often	a	part	of	one	of	the	simplest	queries
that	you	can	create.

The	syntax	of	the	COUNT	function	follows:
SELECT	COUNT(*)
FROM	TABLE_NAME;

The	COUNT	function	is	used	with	parentheses,	which	enclose	the	target	column	or	the
asterisk	to	count	all	rows	of	data	in	the	table.

Tip:	Counting	Basics

Counting	the	number	of	values	for	a	column	is	the	same	as	counting	the	number	of
records	in	a	table	if	the	column	being	counted	is	NOT	NULL	(a	required	column).
However,	COUNT(*)	is	typically	used	for	counting	the	number	of	rows	for	a	table.

You	would	use	the	following	to	count	the	number	of	records	in	the	PASSENGERS	table:
Click	here	to	view	code	image

SELECT	COUNT(*)	FROM	PASSENGERS;

–––—
135001

(1	row(s)	affected)

The	following	counts	the	number	of	values	for	COUNTRYCODE	in	the	PASSENGERS
table:
Click	here	to	view	code	image

SELECT	COUNT(COUNTRYCODE)	FROM	PASSENGERS;

–––—
135001

(1	row(s)	affected)

If	you	want	to	count	only	the	unique	values	that	show	up	within	a	table,	you	would	use	the
DISTINCT	syntax	within	the	COUNT	function.	For	example,	if	you	want	to	get	the
distinct	states	represented	in	the	STATE	column	of	the	EMPLOYEE_TBL,	use	a	query
such	as	the	one	that	follows:
Click	here	to	view	code	image

SELECT	COUNT(DISTINCT	COUNTRYCODE)	FROM	PASSENGERS;

–––—
7

(1	row(s)	affected)

Selecting	Data	from	Another	User’s	Table
Permission	must	be	granted	to	a	user	to	access	another	user’s	table.	If	no	permission	has
been	granted,	access	is	not	allowed.	You	can	select	data	from	another	user’s	table	after
access	has	been	granted.	(The	GRANT	command	is	discussed	in	Hour	20,	“Creating	and
Using	Views	and	Synonyms.”)	To	access	another	user’s	table	in	a	SELECT	statement,
precede	the	table	name	with	the	schema	name	or	the	username	that	owns	(created)	the
table,	as	in	the	following	example:

SELECT	EMPLOYEEID
FROM	DBO.EMPLOYEES;

Using	Column	Aliases
Column	aliases	temporarily	rename	a	table’s	columns	for	the	purpose	of	a	particular
query.	The	following	syntax	illustrates	the	use	of	column	aliases:
Click	here	to	view	code	image

SELECT	COLUMN_NAME	ALIAS_NAME
FROM	TABLE_NAME;

The	following	example	displays	the	airport	name	twice,	giving	the	second	column	an	alias
named	AIRPORT.	Notice	the	column	headers	in	the	output.
Click	here	to	view	code	image

SELECT
AIRPORTNAME,
AIRPORTNAME	AS	AIRPORT
FROM	AIRPORTS
WHERE	COUNTRYCODE=‘HU’;

AIRPORTNAME																				AIRPORT
––––––––––	––––––––––
Debrecen																							Debrecen
Deli	Railway																			Deli	Railway
Ferihegy																							Ferihegy
Gyor-Per																							Gyor-Per
Miskolc																								Miskolc
Pecs-Pogany																				Pecs-Pogany
Saarmelleek/balaton												Saarmelleek/balaton

(7	row(s)	affected)

Note:	Using	Synonyms	in	Queries

If	a	synonym	exists	in	the	database	for	the	table	to	which	you	want	access,	you	do
not	have	to	specify	the	schema	name	for	the	table.	Synonyms	are	alternative	names
for	tables,	which	are	discussed	in	Hour	21,	“Working	with	the	System	Catalog.”

Column	aliases	can	be	used	to	customize	names	for	column	headers	and	reference	a
column	with	a	shorter	name	in	some	SQL	implementations.

Tip:	Aliasing	a	Column	in	a	Query

When	a	column	is	renamed	in	a	SELECT	statement,	the	name	is	not	a	permanent
change.	The	change	is	only	for	that	particular	SELECT	statement.

Summary
This	hour	introduced	you	to	the	database	query,	a	means	for	obtaining	useful	information
from	a	relational	database.	The	SELECT	statement	creates	queries	in	SQL.	You	must
include	the	FROM	clause	with	every	SELECT	statement.	You	have	learned	how	to	place	a
condition	on	a	query	using	the	WHERE	clause	and	how	to	sort	data	using	the	ORDER	BY
clause.	You	have	also	learned	the	fundamentals	of	writing	queries.	After	a	few	exercises,
you	should	be	prepared	to	learn	more	about	queries	during	the	next	hour.

Q&A
Q.	Why	won’t	the	SELECT	clause	work	without	the	FROM	clause?

A.	The	SELECT	clause	merely	tells	the	database	what	data	you	want	to	see.	The	FROM
clause	tells	the	database	where	to	get	the	data.

Q.	What	is	the	purpose	of	using	the	DISTINCT	option?

A.	The	DISTINCT	option	causes	the	query	to	suppress	duplicate	rows	of	columns	from
appearing	in	the	result	set.

Q.	When	I	use	the	ORDER	BY	clause	and	choose	the	descending	option,	what	does
that	actually	do	to	the	data?

A.	Say	that	you	use	the	ORDER	BY	clause	and	have	selected	LASTNAME	from	the
PASSENGERS	table.	If	you	use	the	descending	option,	the	order	starts	with	the	letter
Z	and	finishes	with	the	letter	A.	Now,	say	that	you	have	used	the	ORDER	BY	clause
and	have	selected	the	BIRTHDATE	from	the	PASSENGERS.	If	you	use	the
descending	option,	the	order	starts	with	the	most	recent	date	and	goes	down	to	the
oldest	date.

Q.	If	I	have	a	DISTINCT	option,	WHERE	clause,	and	an	ORDER	BY	clause,	in
which	order	are	they	performed?

A.	The	WHERE	clause	is	applied	first	to	constrain	the	results,	then	the	DISTINCT	is
applied,	and	lastly	the	ORDER	BY	clause	is	used	to	order	the	finalized	result	set.

Q.	What	advantage	is	there	to	renaming	columns?

A.	The	new	column	name	could	fit	the	description	of	the	returned	data	more	closely	for
a	particular	report.

Q.	What	would	be	the	ordering	of	the	following	statement?
Click	here	to	view	code	image

SELECT	FIRSTNAME,LASTNAME,BIRTHDATE	FROM	PASSENGERS
ORDER	BY	3,1

A.	The	query	would	be	ordered	by	the	BIRTHDATE	column	and	then	by	the
FIRSTNAME	column.	Because	no	ordering	preference	was	specified,	they	would
both	be	in	ascending	order.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	Name	the	required	parts	for	any	SELECT	statement.

2.	In	the	WHERE	clause,	are	single	quotation	marks	required	for	all	the	data?

3.	Can	multiple	conditions	be	used	in	the	WHERE	clause?

4.	Is	the	DISTINCT	option	applied	before	or	after	the	WHERE	clause?

5.	Is	the	ALL	option	required?

6.	How	are	numeric	characters	treated	when	ordering	based	upon	a	character	field?

7.	How	does	Oracle	handle	its	default	case-sensitivity	differently	from	Microsoft	SQL
Server?

8.	How	is	the	ordering	of	the	fields	in	the	ORDER	BY	clause	important?

9.	How	is	the	ordering	determined	in	the	ORDER	BY	clause	when	you	use	numbers
instead	of	column	names?

Exercises
1.	Invoke	your	RDBMS	query	editor	on	your	computer.	Using	your
CanaryAirlines	database,	enter	the	following	SELECT	statements.	Determine
whether	the	syntax	is	correct.	If	the	syntax	is	incorrect,	make	corrections	to	the	code
as	necessary.	Use	the	PASSENGERS	table	for	this	exercise.

a.
Click	here	to	view	code	image

SELECT	PASSENGERID,	LASTNAME,	FIRSTNAME,
FROM	PASSENGERS;

b.
Click	here	to	view	code	image

SELECT	PASSENGERID,	LASTNAME
ORDER	BY	PASSENGERS
FROM	PASSENGERS;

c.
Click	here	to	view	code	image

SELECT	PASSENGERID,	LASTNAME,	FIRSTNAME
FROM	PASSENGERS
WHERE	PASSENGERID	=	‘134996’
ORDER	BY	PASSENGERID;

d.
Click	here	to	view	code	image

SELECT	PASSENGERID	BIRTHDATE,	LASTNAME
FROM	PASSENGERS
WHERE	PASSENGERID	=	‘134996’
ORDER	BY	1;

e.
Click	here	to	view	code	image

SELECT	PASSENGERID,	LASTNAME,	FIRSTNAME
FROM	PASSENGERS
WHERE	PASSENGERID	=	‘134996’
ORDER	BY	3,	1,	2;

2.	Write	a	SELECT	statement	to	get	a	passenger’s	LASTNAME,	FIRSTNAME,	and
BIRTHDATE	by	her	PASSENGERID	number.	Does	it	matter	if	you	use	a	string
value	instead	of	a	number?	Is	the	string	'99999999'	a	valid	value	to	use	in	the
WHERE	clause?

Click	here	to	view	code	image
SELECT	LASTNAME,	FIRSTNAME,	BIRTHDATE
FROM	PASSENGERS
WHERE	PASSENGERID	=	‘99999999’;

3.	Write	a	SELECT	statement	that	returns	the	name	and	seating	capacity	of	each
airplane	from	the	AIRCRAFT	table.	Which	type	of	plane	has	the	largest	capacity?
How	many	planes	are	freight	planes?	Where	do	the	freight-only	planes	show	up	in
your	ordered	results?

4.	Write	a	query	that	generates	a	list	of	all	passengers	who	were	born	after	2015-01-01.

5.	Write	a	simple	query	to	return	a	list	of	passengers	with	a	particular	last	name.	Try
using	a	WHERE	clause	with	the	name	in	mixed	case	and	uppercase.	What	case-
sensitivity	is	your	RDBMS	set	to?

Hour	8.	Using	Operators	to	Categorize	Data

What	You’ll	Learn	in	This	Hour:

	What	is	an	operator?

	An	overview	of	operators	in	SQL

	How	are	operators	used	singularly?

	How	are	operators	used	in	combinations?

Operators	are	used	with	the	SELECT	command’s	WHERE	clause	to	place	extended
constraints	on	data	that	a	query	returns.	Various	operators	are	available	to	the	SQL	user
that	support	all	data	querying	needs.	This	hour	shows	you	what	operators	are	available	for
you	to	use	as	well	as	how	to	utilize	them	properly	within	the	WHERE	clause.

What	Is	an	Operator	in	SQL?
An	operator	is	a	reserved	word	or	a	character	used	primarily	in	a	SQL	statement’s	WHERE
clause	to	perform	operation(s),	such	as	comparisons	and	arithmetic	operations.	Operators
are	used	to	specify	conditions	in	a	SQL	statement	and	to	serve	as	conjunctions	for	multiple
conditions	in	a	statement.

The	operators	discussed	during	this	hour	are

	Comparison	operators

	Logical	operators

	Operators	used	to	negate	conditions

	Arithmetic	operators

Comparison	Operators
Comparison	operators	test	single	values	in	a	SQL	statement.	The	comparison	operators
discussed	consist	of	=,	<>,	<,	and	>.

These	operators	are	used	to	test

	Equality

	Non-equality

	Less	than

	Greater	than

These	comparison	operators,	including	examples,	are	covered	in	the	following	sections.

Equality
The	equal	operator	compares	single	values	to	one	another	in	a	SQL	statement.	The	equal
sign	(=)	symbolizes	equality.	When	testing	for	equality,	the	compared	values	must	match
exactly,	or	no	data	is	returned.	If	two	values	are	equal	during	a	comparison	for	equality,
the	returned	value	for	the	comparison	is	TRUE;	the	returned	value	is	FALSE	if	equality	is
not	found.	This	Boolean	value	(TRUE/FALSE)	is	used	to	determine	whether	data	is
returned	according	to	the	condition.

You	can	use	the	=	operator	by	itself	or	combine	it	with	other	operators.	Remember	from
the	previous	chapter	that	character	data	comparisons	can	either	be	case-sensitive	or	case-
insensitive	depending	on	how	your	relational	database	management	system	(RDBMS)	is
set	up.	So	remember	to	ensure	that	you	understand	how	exactly	your	values	are	compared
by	the	query	engine.

The	following	example	shows	that	seating	is	equal	to	400:
WHERE	SEATING	=	400

The	following	query	returns	all	rows	of	data	where	the	PROD_ID	is	equal	to	2345:
Click	here	to	view	code	image

SELECT	*

FROM	AIRCRAFT

WHERE	SEATING=400;

AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	–––––––––
744										Boeing	747-400																	0											400
L10										Lockheed	L/1011	TR													0											400

(2	row(s)	affected)

Non-Equality
For	every	equality,	there	are	multiple	non-equalities.	In	SQL,	the	operator	used	to	measure
non-equality	is	<>	(the	less	than	sign	combined	with	the	greater	than	sign).	The	condition
returns	TRUE	if	the	condition	finds	non-equality;	FALSE	is	returned	if	equality	is	found.

The	following	example	shows	that	seating	is	not	equal	to	400:
WHERE	SEATING<>400

Tip:	Options	for	Non-Equality

Another	option	for	non-equality	is	!=.	Many	of	the	major	implementations	have
adopted	!=	to	represent	not-equal.	Microsoft	SQL	Server,	MySQL,	and	Oracle
support	both	versions	of	the	operator.	Oracle	actually	supports	a	third,	^=,	as
another	version,	but	it	is	rarely	used	because	most	people	are	accustomed	to	using
the	earlier	two	versions.

The	following	example	shows	all	the	aircraft	information	from	the	AIRCRAFT	table	that
does	not	have	the	FreightOnly	column	of	0:

Click	here	to	view	code	image

SELECT	*

FROM	AIRCRAFT

WHERE	FREIGHTONLY	<>	0;

AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	–––––––––
74F										Boeing	747	Freighter											1											0
M1F										McDonnell	Douglas	MD-11	Freigh	1											0
WWF										Westwind	Freighter													1											0

(3	row(s)	affected)

Again,	remember	that	your	collation	and	specifically	whether	your	system	is	set	up	as
case-sensitive	or	case-insensitive	plays	a	critical	role	in	these	comparisons.	If	your	system
is	case-sensitive,	then	WESTWIND,	WestWind,	and	westwind	would	be	considered
different	values,	which	might	or	might	not	be	your	intention.

Less	Than	and	Greater	Than
Two	of	the	most	widely	used	comparison	operators	are	greater	than	and	less	than.	Greater
than	works	the	opposite	of	less	than.	You	can	use	the	symbols	<	(less	than)	and	>	(greater
than)	by	themselves	or	in	combination	with	each	other	or	other	operators	to	perform	a
comparison	of	non-null	values.	The	results	of	both	are	a	Boolean	value	that	shows	whether
the	comparison	is	accurate.

The	following	examples	show	that	seating	is	less	than	or	greater	than	400:
WHERE	SEATING	<	400
WHERE	SEATING	>	400

In	the	following	example,	anything	less	than	and	not	equal	to	400	returns	TRUE.	Any
value	of	400	or	more	returns	FALSE:
Click	here	to	view	code	image

SELECT	*

FROM	AIRCRAFT

WHERE	SEATING>400;

AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	–––––––––
742										Boeing	747-200																	0											420
743										Boeing	747-300																	0											420
747										Boeing	747	(all	series)								0											420
773										Boeing	777-300																	0											420

(4	row(s)	affected)

In	the	next	example,	notice	that	the	Boeing	737	with	seating	for	100	was	not	included	in
the	query’s	result	set.	This	is	because	the	less	than	operator	is	not	inclusive	of	the	value	it
is	compared	against.
Click	here	to	view	code	image

SELECT	*

FROM	AIRCRAFT

WHERE	SEATING	<	100;

AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	–––––––––
146										British	Aerospace	BAe146-100			0											82
74F										Boeing	747	Freighter											1											0
AR7										British	Aerospace	RJ70									0											76
BEH										Beachcraft	1900D															0											18
BEK										Beach	200																						0											13
CV5										Convair	500																				0											36
DH8										Bombardier	DE	HA															0											37
E12										Embraer	(EMB)	120														0											30
EM2										Embraer	120																				0											26
F10										Fokker	F100																				0											95
F28										Fokker	F28-1000																0											65
M1F										McDonnell	Douglas	MD-11	Freigh	1											0
WWF										Westwind	Freighter													1											0

(13	row(s)	affected)

Combinations	of	Comparison	Operators
The	equal	operator	can	be	combined	with	the	less	than	and	greater	than	operators	to	have
them	include	the	value	that	they	are	compared	against.

The	following	example	shows	that	seating	is	less	than	or	equal	to	400:
WHERE	SEATING	<=	400

The	next	example	shows	that	seating	is	greater	than	or	equal	to	400:
WHERE	SEATING	>=	400

Less	than	or	equal	to	400	includes	400	and	all	values	less	than	400.	Any	value	in	that
range	returns	TRUE;	any	value	greater	than	400	returns	FALSE.	Greater	than	or	equal	to
also	includes	the	value	400	in	this	case	and	works	the	same	as	the	<=	operator.	The
following	example	demonstrates	how	to	use	the	combined	operator	to	find	all	aircraft	that
have	100	seats	or	less	capacity:
Click	here	to	view	code	image

SELECT	*

FROM	AIRCRAFT

WHERE	SEATING	<=	100;

AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	–––––––––
146										British	Aerospace	BAe146-100			0											82
737										Boeing	737																					0											100
74F										Boeing	747	Freighter											1											0
AR7										British	Aerospace	RJ70									0											76
BEH										Beachcraft	1900D															0											18
BEK										Beach	200																						0											13
CV5										Convair	500																				0											36
DH8										Bombardier	DE	HA															0											37
E12										Embraer	(EMB)	120														0											30
EM2										Embraer	120																				0											26
F10										Fokker	F100																				0											95
F28										Fokker	F28-1000																0											65
M1F										McDonnell	Douglas	MD-11	Freigh	1											0
WWF										Westwind	Freighter													1											0

(14	row(s)	affected)

Logical	Operators
Logical	operators	are	those	operators	that	use	SQL	keywords	instead	of	symbols	to	make
comparisons.	Following	are	the	logical	operators	in	SQL,	which	are	covered	in	the
following	subsections:

	IS	NULL

	BETWEEN

	IN

	LIKE

	EXISTS

	UNIQUE

	ALL,	SOME,	and	ANY

IS	NULL
The	IS	NULL	operator	compares	a	value	with	a	NULL	value.	For	example,	you	might
look	for	passengers	who	do	not	have	a	birthdate	entered	by	searching	for	NULL	values	in
the	BIRTHDATE	column	of	the	PASSENGERS	table.

The	following	example	compares	a	value	to	a	NULL	value;	here,	birthdate	has	no	value:
WHERE	BIRTHDATE	IS	NULL

The	following	example	demonstrates	finding	all	the	passengers	from	the	PASSENGERS
table	who	do	not	have	a	birthdate	listed	in	the	table:
Click	here	to	view	code	image

SELECT	PASSENGERID,	LASTNAME,	FIRSTNAME,	BIRTHDATE

FROM	PASSENGERS

WHERE	BIRTHDATE	IS	NULL;

PASSENGERID
LASTNAME																							FIRSTNAME																						BIRTHDATE
–––—	––––––––––	––––––––––	–––
124309						Copsey																									Merle																										NULL
124310						Alsaqri																								Leann																										NULL

(2	row(s)	affected)

Understand	that	the	literal	word	null	is	different	from	a	NULL	value.	Examine	the
following	example;	observe	that	you	cannot	interchange	the	string	value	'NULL'	because
it	does	not	mean	the	same	thing	as	a	NULL	value:
Click	here	to	view	code	image

SELECT	PASSENGERID,	LASTNAME,	FIRSTNAME,	BIRTHDATE

FROM	PASSENGERS

WHERE	BIRTHDATE=‘NULL’;

PASSENGERID
LASTNAME																							FIRSTNAME																	BIRTHDATE
–––—	––––––––––	––––––––-	––––—

Msg	241,	Level	16,	State	1,	Line	1
Conversion	failed	when	converting	date	and/or	time	from	character	string.

BETWEEN
The	BETWEEN	operator	searches	for	values	that	are	within	a	set	of	values,	given	the
minimum	value	and	the	maximum	value.	The	minimum	and	maximum	values	are	included
as	part	of	the	conditional	set.

The	following	example	shows	that	seating	must	fall	between	200	and	300,	including	the
values	200	and	300:
Click	here	to	view	code	image

WHERE	SEATING	BETWEEN	200	AND	300

Tip:	Proper	Use	of	Between

BETWEEN	is	inclusive	and	therefore	includes	the	minimum	and	maximum	values	in
the	query	results.

The	following	example	shows	all	the	aircraft	that	have	seating	between	200	and	300:
Click	here	to	view	code	image

SELECT	*

FROM	AIRCRAFT

WHERE	SEATING	BETWEEN	200	AND	300;

AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	–––––––––
313										Airbus	A310-300																0											218
343										Airbus	340-300																	0											230
74M										Boeing	747	Combi															0											246
762										Boeing	767-200																	0											200
763										Boeing	763-300																	0											228
AB6										Airbus	600	Series	E												0											226

(6	row(s)	affected)

Notice	that	the	value	200	is	included	in	the	output.

IN
The	IN	operator	compares	a	value	to	a	list	of	literal	values	that	have	been	specified.	For
TRUE	to	be	returned,	the	compared	value	must	match	at	least	one	of	the	values	in	the	list.

The	following	example	shows	that	seating	must	match	one	of	the	values	200,	300,	or
400:
Click	here	to	view	code	image

WHERE	SEATING	IN(200,	300,	400)

The	following	example	uses	the	IN	operator	to	match	all	the	aircraft	that	have	a	seating
capacity	within	a	certain	range	of	values:
Click	here	to	view	code	image

SELECT	*

FROM	AIRCRAFT

WHERE	SEATING	IN	(200,	300,	400);

AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	–––––––––
744										Boeing	747-400																	0											400
762										Boeing	767-200																	0											200
L10										Lockheed	L/1011	TR													0											400

(3	row(s)	affected)

Using	the	IN	operator	can	achieve	the	same	results	as	using	the	OR	operator,	but	it	can
return	the	results	quicker	because	it	is	optimized	in	the	database.

LIKE
The	LIKE	operator	compares	a	value	to	similar	values	using	wildcard	operators.	Two
wildcards	are	used	with	the	LIKE	operator:

	The	percent	sign	(%)

	The	underscore	(_)

The	percent	sign	represents	zero,	one,	or	multiple	characters.	The	underscore	represents	a
single	number	or	character.	The	symbols	can	be	used	in	combinations.

The	following	could	find	any	values	that	start	with	B:
Click	here	to	view	code	image

WHERE	AIRCRAFTTYPE	LIKE	‘B%’

The	following	example	finds	any	values	that	have	DOUGLAS	in	any	position:
Click	here	to	view	code	image

WHERE	AIRCRAFTTYPE	LIKE	‘%DOUGLAS%’

The	following	example	finds	any	values	that	have	ir	in	the	second	and	third	positions:
Click	here	to	view	code	image

WHERE	AIRCRAFTTYPE	LIKE	‘_ir%’

The	following	example	finds	any	values	that	start	with	A	and	are	at	least	three	characters
in	length:
Click	here	to	view	code	image

WHERE	AIRCRAFTTYPE	LIKE	‘A_%_%’

The	following	example	finds	any	values	that	end	with	0:
Click	here	to	view	code	image

WHERE	AIRCRAFTTYPE	LIKE	‘%0’

The	following	example	finds	any	values	that	have	a	c	in	the	second	position	and	end	with
a	1:
Click	here	to	view	code	image

WHERE	AIRCRAFTTYPE	LIKE	‘_c%1’

The	following	example	finds	any	values	in	a	five-digit	number	that	start	with	2	and	end

with	3:
Click	here	to	view	code	image

WHERE	PASSENGERID	LIKE	‘2___3’

The	following	example	shows	all	aircraft	types	that	end	with	the	letter	P	in	uppercase:
Click	here	to	view	code	image

SELECT	AIRCRAFTTYPE

FROM	AIRCRAFT

WHERE	AIRCRAFTTYPE	LIKE	‘%P’;

AIRCRAFTTYPE
––––––––––
Boeing	747SP

(1	row(s)	affected)

The	following	example	shows	all	product	descriptions	whose	second	character	is	the	letter
c	in	lowercase:
Click	here	to	view	code	image

SELECT	AIRCRAFTTYPE

FROM	AIRCRAFT

WHERE	AIRCRAFTTYPE	LIKE	‘_c%’;

AIRCRAFTTYPE
––––––––––
McDonnell	Douglas	DC10
McDonnell	Douglas	MD-11
McDonnell	Douglas	MD-11	Freight

(3	row(s)	affected)

EXISTS
The	EXISTS	operator	searches	for	the	presence	of	a	row	in	a	specified	table	that	meets
certain	criteria.

The	following	example	searches	to	see	whether	the	PASSENGERID	3333333333	is	in
the	PASSENGERS	table:
Click	here	to	view	code	image

EXISTS	(SELECT	*	FROM	PASSENGERS	WHERE	PASSENGERID	=333333333)

The	following	example	is	a	form	of	a	subquery,	which	is	further	discussed	during	Hour	14,
“Using	Subqueries	to	Define	Unknown	Data”:
Click	here	to	view	code	image

SELECT	SEATING

FROM	AIRCRAFT	A

WHERE	EXISTS	(SELECT	*

															FROM	AIRCRAFT
															WHERE	AIRCRAFTCODE=A.AIRCRAFTCODE	AND	SEATING	>	500);
No	rows	selected.
–––-

There	were	no	rows	selected	because	no	records	existed	where	the	seating	was	greater

than	500.	The	AIRCRAFTCODE=A.AIRCRAFTCODE	portion	of	the	subquery	is	what
maps	rows	from	the	EXISTS	query	to	the	table	in	the	FROM	clause.	Because
AIRCRAFTCODE	is	the	column	that	uniquely	identifies	rows	in	the	AIRCRAFT	table,	it	is
the	best	field	to	use	for	the	mapping.
Consider	the	following	example:
Click	here	to	view	code	image

SELECT	SEATING

FROM	AIRCRAFT	A

WHERE	EXISTS	(SELECT	*

															FROM	AIRCRAFT
															WHERE	AIRCRAFTCODE=A.AIRCRAFTCODE	AND	SEATING	>	400);
SEATING
––––––––––
420
420
420
420

(4	row(s)	affected)

The	seating	was	displayed	for	records	in	the	table	because	records	existed	where	the
aircraft	seating	capacity	was	greater	than	400.	What	if	we	had	not	used	the
AIRCRAFTCODE	to	tie	the	EXISTS	subquery	back	to	the	AIRCRAFT	table?	Try	the
following	and	compare	the	number	of	rows	returned.	Why	do	you	think	you	got	these
results?
Click	here	to	view	code	image

SELECT	SEATING

FROM	AIRCRAFT	A

WHERE	EXISTS	(SELECT	*

															FROM	AIRCRAFT
															WHERE	SEATING	>	400);

ALL,	SOME,	and	ANY
The	ALL	operator	is	used	to	compare	a	value	to	all	values	in	another	value	set.

The	following	example	tests	seating	to	see	whether	it	is	greater	than	the	seating	capacity
of	the	Boeing	777	aircraft	type:
Click	here	to	view	code	image

WHERE	SEATING	>	ALL	SEATING	(SELECT	SEATING	FROM	AIRCRAFT
																																				WHERE	AIRCRAFTTYPE	=	‘Boeing	777’)

The	following	example	shows	how	the	ALL	operator	is	used	with	a	subquery:
Click	here	to	view	code	image

SELECT	*

FROM	AIRCRAFT

WHERE	SEATING	>	ALL	(SELECT	SEATING

																			FROM	AIRCRAFT
																			WHERE	AIRCRAFTTYPE=‘Boeing	777’);

AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	–––––––––

742										Boeing	747-200																	0											420
743										Boeing	747-300																	0											420
744										Boeing	747-400																	0											400
747										Boeing	747	(all	series)								0											420
773										Boeing	777-300																	0											420
D10										McDonnell	Douglas	DC10									0											399
L10										Lockheed	L/1011	TR													0											400

(7	row(s)	affected)

In	this	output,	seven	records	had	a	seating	capacity	greater	than	the	Boeing	777.

The	ANY	operator	compares	a	value	to	any	applicable	value	in	the	list	according	to	the
condition.	SOME	is	an	alias	for	ANY,	so	you	can	use	them	interchangeably.

The	following	example	tests	seating	to	see	whether	it	is	greater	than	any	of	the	seating
capacities	of	aircraft	having	greater	than	375	seats:
Click	here	to	view	code	image

WHERE	SEATING	>	ANY	SEATING	(SELECT	SEATING	FROM	AIRCRAFT
																																				WHERE	SEATING	>	375)

The	following	example	shows	the	use	of	the	ANY	operator	used	with	a	subquery:
Click	here	to	view	code	image

SELECT	*

FROM	AIRCRAFT

WHERE	SEATING	>	ANY	(SELECT	SEATING

																			FROM	AIRCRAFT
																			WHERE	SEATING	>	375);

AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	––––––––––
742										Boeing	747-200																	0											420
743										Boeing	747-300																	0											420
744										Boeing	747-400																	0											400
747										Boeing	747	(all	series)								0											420
773										Boeing	777-300																	0											420
L10										Lockheed	L/1011	TR													0											400

(6	row(s)	affected)

In	this	output,	fewer	records	were	returned	than	when	using	ALL	because	the	seating	had
to	be	greater	than	any	of	the	values	for	seating	above	375.	The	one	record	that	was	not
displayed	had	a	seating	capacity	of	399,	which	was	not	greater	than	any	of	the	values
greater	than	375	(which	the	lowest	value	was,	in	fact,	399).	It	should	also	be	noted	that
ANY	is	not	a	synonym	for	IN	because	the	IN	operator	can	take	an	expression	list	of	the
form	shown	here,	whereas	ANY	cannot:
Click	here	to	view	code	image

IN	(<Item#1>,<Item#2>,<Item#3>)

In	addition,	the	negation	of	IN,	discussed	later	in	the	section	“Negative	Operators,”	would
be	NOT	IN,	and	its	alias	would	be	<>ALL	instead	of	<>ANY.

Conjunctive	Operators
What	if	you	want	to	use	multiple	conditions	to	narrow	data	in	a	SQL	statement?	You	must
be	able	to	combine	the	conditions,	and	you	would	do	this	with	the	following	conjunctive
operators:

	AND

	OR

Conjunctive	operators	provide	a	means	to	make	multiple	comparisons	with	different
operators	in	the	same	SQL	statement.	The	following	sections	describe	each	operator’s
behavior.

AND
The	AND	operator	allows	the	existence	of	multiple	conditions	in	a	SQL	statement’s
WHERE	clause.	For	an	action	to	be	taken	by	the	SQL	statement,	whether	it	be	a	transaction
or	query,	all	conditions	separated	by	the	AND	must	be	TRUE.

The	following	example	shows	that	the	PASSENGERID	must	match	333333333	and	the
BIRTHDATE	must	be	greater	than	1990-01-01:
Click	here	to	view	code	image

WHERE	PASSENGERID	=	333333333	AND	BIRTHDATE	>	‘1990-01-01’

The	following	example	shows	the	use	of	the	AND	operator	to	find	the	aircraft	with	seating
capacity	between	two	limiting	values:
Click	here	to	view	code	image

SELECT	*

FROM	AIRCRAFT

WHERE	SEATING	>	300

		AND	SEATING	<	400;

AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	–––––––––
330										Airbus	330	(200	&	300)	series		0											335
74L										Boeing	747SP																			0											314
772										Boeing	777-200																	0											375
777										Boeing	777																					0											375
D10										McDonnell	Douglas	DC10									0											399
M11										McDonnell	Douglas	MD-11								0											323

(6	row(s)	affected)

In	this	output,	the	value	for	seating	had	to	be	both	greater	than	300	and	less	than	400	for
data	to	be	retrieved.

This	statement	retrieves	no	data	because	each	row	of	data	has	only	one	aircraft	code:
Click	here	to	view	code	image

SELECT	*
FROM	AIRCRAFT
WHERE	AIRCRAFTCODE	=	‘772’
		AND	AIRCRAFTCODE	=	‘777’;

no	rows	selected

OR
The	OR	operator	combines	multiple	conditions	in	a	SQL	statement’s	WHERE	clause.	For	an
action	to	be	taken	by	the	SQL	statement,	whether	it	is	a	transaction	or	query,	at	least	one
of	the	conditions	that	are	separated	by	OR	must	be	TRUE.

The	following	example	shows	that	seating	must	match	either	200	or	300:
Click	here	to	view	code	image

WHERE	SEATING	=	200	OR	SEATING	=	300

The	following	example	shows	the	use	of	the	OR	operator	to	limit	a	query	on	the
PASSENGERS	table:
Click	here	to	view	code	image

SELECT	PASSENGERID,	FIRSTNAME,	LASTNAME

FROM	PASSENGERS

WHERE	PASSENGERID	=	20

			OR	PASSENGERID	=	134991;

PASSENGERID	FIRSTNAME																						LASTNAME
–––—	––––––––––	––––––––––
20										Odilia																									Moros
134991						Tana																											Lehnortt

(2	row(s)	affected)

In	this	output,	either	one	of	the	conditions	had	to	be	TRUE	for	data	to	be	retrieved.

Note:	Comparison	Operators	Can	Be	Stacked

Each	of	the	comparison	and	logical	operators	can	be	used	singularly	or	in
combination	with	each	other.	This	can	become	important	in	modeling	complex
statements	where	you	test	for	several	different	criteria.	So	utilizing	AND	and	OR
statements	to	stack	both	comparison	and	logical	operators	together	becomes	an
important	tool	in	getting	correct	query	results.

Two	records	that	met	either	one	or	the	other	condition	were	found.

In	the	next	example,	notice	the	use	of	the	AND	and	two	OR	operators.	In	addition,	notice
the	logical	placement	of	the	parentheses	to	make	the	statement	more	readable.
Click	here	to	view	code	image

SELECT	PASSENGERID,	FIRSTNAME,	LASTNAME

FROM	PASSENGERS

WHERE

LASTNAME	LIKE	‘M%’

AND	(PASSENGERID	=	20

			OR	PASSENGERID	=	134991);

PASSENGERID	FIRSTNAME																						LASTNAME
–––—	––––––––––	––––––––––
20										Odilia																									Moros

(1	row(s)	affected)

Tip:	Group	Your	Queries	to	Make	Them	Easily	Understandable

When	using	multiple	conditions	and	operators	in	a	SQL	statement,	you	might	find
that	using	parentheses	to	separate	statements	into	logical	groups	improves	overall
readability.	However,	be	aware	that	the	misuse	of	parentheses	could	adversely
affect	your	output	results.

The	passenger	record	returned	needed	a	last	name	beginning	with	M,	and	the
PASSENGERID	had	to	be	any	one	of	the	two	listed.	A	row	was	not	returned	for
PASSENGERID	134991	because	the	last	name	of	the	passenger	did	not	begin	with	M.
Parentheses	are	not	used	just	to	make	your	code	more	readable	but	to	ensure	that	logical
grouping	of	conjunctive	operators	is	evaluated	properly.	By	default,	operators	are	parsed
from	left	to	right	in	the	order	that	they	are	listed.

If	you	remove	the	parentheses,	the	result	is	much	different,	as	you	can	see	in	the	following
example:
Click	here	to	view	code	image

SELECT	PASSENGERID,	FIRSTNAME,	LASTNAME

FROM	PASSENGERS

WHERE

LASTNAME	LIKE	‘M%’

AND	PASSENGERID	=	20

			OR	PASSENGERID	=	134991;

PASSENGERID	FIRSTNAME																						LASTNAME
–––—	––––––––––	––––––––––
20										Odilia																									Moros
134991						Tana																											Lehnortt

(2	row(s)	affected)

The	passenger	name	Tana	Lehnortt	gets	returned	now	because	this	SQL	query	asks	to
return	a	PASSENGERID	equal	to	20	and	LASTNAME	starting	with	M	or	any	rows	with
PASSENGERID	equal	to	134991.	Use	parentheses	properly	within	your	WHERE	clause
to	ensure	that	you	are	returning	the	correct	logical	result	set.	Otherwise,	remember	that
your	operators	are	evaluated	in	a	certain	order,	which	is	normally	from	left	to	right.

Negative	Operators
There	is	a	way	to	negate	each	logical	operator	to	change	the	tested	condition’s	viewpoint.

The	NOT	operator	reverses	the	meaning	of	the	logical	operator	with	which	it	is	used.	NOT
can	be	used	with	other	operators	to	form	the	following	methods:

	<>,	!=	(NOT	EQUAL)

	NOT	BETWEEN

	NOT	IN

	NOT	LIKE

	IS	NOT	NULL

	NOT	EXISTS

	NOT	UNIQUE

Each	method	is	discussed	in	the	following	sections.	First,	look	at	how	to	test	for
inequality.

NOT	EQUAL
Earlier	this	hour	you	learned	how	to	test	for	inequality	using	the	<>	operator.	To	test	for
inequality,	you	actually	negate	the	equality	operator.	Here	we	cover	a	second	method	for
testing	inequality	available	in	some	SQL	implementations.

The	following	examples	show	that	seating	is	not	equal	to	200:
WHERE	SEATING	<>	200
WHERE	SEATING	!=	200

In	the	second	example,	you	can	see	that	the	exclamation	mark	negates	the	equality
comparison.	The	use	of	the	exclamation	mark	is	allowed	in	addition	to	the	standard
operator	for	inequality	<>	in	some	implementations.

Note:	Check	Your	Implementation

Check	your	particular	implementation	for	the	use	of	the	exclamation	mark	to	negate
the	inequality	operator.	The	other	operators	mentioned	are	almost	always	the	same
if	compared	between	different	SQL	implementations.

NOT	BETWEEN
The	BETWEEN	operator	is	negated	with	the	NOT	operator	as	follows:
Click	here	to	view	code	image

WHERE	SEATING	NOT	BETWEEN	100	AND	400

The	value	for	seating	cannot	fall	between	100	and	400	or	include	the	values	100	and
400.	Now	see	how	this	works	on	the	AIRCRAFT	table:
Click	here	to	view	code	image

SELECT	*

FROM	AIRCRAFT

WHERE	SEATING	NOT	BETWEEN	100	AND	400;

AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	–––––––––
146										British	Aerospace	BAe146-100			0											82
742										Boeing	747-200																	0											420
743										Boeing	747-300																	0											420
747										Boeing	747	(all	series)								0											420
74F										Boeing	747	Freighter											1											0
773										Boeing	777-300																	0											420
AR7										British	Aerospace	RJ70									0											76
BEH										Beachcraft	1900D															0											18
BEK										Beach	200																						0											13

CV5										Convair	500																				0											36
DH8										Bombardier	DE	HA															0											37
E12										Embraer	(EMB)	120														0											30
EM2										Embraer	120																				0											26
F10										Fokker	F100																				0											95
F28										Fokker	F28-1000																0											65
M1F										McDonnell	Douglas	MD-11	Freigh	1											0
WWF										Westwind	Freighter													1											0

(17	row(s)	affected)

NOT	IN
The	IN	operator	is	negated	as	NOT	IN.	All	seating	in	the	following	example	that	are	not
in	the	listed	values,	if	any,	are	returned:
Click	here	to	view	code	image

WHERE	SEATING	NOT	IN	(100,	150,	200,	250,	300,	375,	400,	420)

The	following	example	demonstrates	using	the	negation	of	the	IN	operator:
Click	here	to	view	code	image

SELECT	*

FROM	AIRCRAFT

WHERE	SEATING	NOT	IN	(100,	150,	200,	250,	300,	375,	400,	420);
AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	–––––––––
146										British	Aerospace	BAe146-100			0											82
310										Airbus	A310																				0											198
313										Airbus	A310-300																0											218
330										Airbus	330	(200	&	300)	series		0											335
343										Airbus	340-300																	0											230
72S										Boeing	727																					0											153
733										Boeing	737-300																	0											106
734										Boeing	737-400																	0											129
735										Boeing	737-500																	0											108
738										Boeing	737-800																	0											114
74F										Boeing	747	Freighter											1											0
74L										Boeing	747SP																			0											314
74M										Boeing	747	Combi															0											246
763										Boeing	763-300																	0											228
AB6										Airbus	600	Series	E												0											226
AR7										British	Aerospace	RJ70									0											76
BEH										Beachcraft	1900D															0											18
BEK										Beach	200																						0											13
CV5										Convair	500																				0											36
D10										McDonnell	Douglas	DC10									0											399
DH8										Bombardier	DE	HA															0											37
E12										Embraer	(EMB)	120														0											30
EM2										Embraer	120																				0											26
F10										Fokker	F100																				0											95
F28										Fokker	F28-1000																0											65
M11										McDonnell	Douglas	MD-11								0											323
M1F										McDonnell	Douglas	MD-11	Freigh	1											0
WWF										Westwind	Freighter													1											0

(28	row(s)	affected)

In	this	output,	records	were	not	displayed	for	the	listed	identifications	after	the	NOT	IN
operator.

NOT	LIKE
The	LIKE,	or	wildcard,	operator	is	negated	as	NOT	LIKE.	When	NOT	LIKE	is	used,
only	values	that	are	not	similar	are	returned.

The	following	finds	values	that	do	not	start	with	BOE:
Click	here	to	view	code	image

WHERE	AIRCRAFTTYPE	NOT	LIKE	‘BOE%’

The	following	finds	values	that	do	not	have	BOE	in	any	position:
Click	here	to	view	code	image

WHERE	SALARY	NOT	LIKE	‘%737%’

The	following	finds	values	that	do	not	have	cD	starting	in	the	second	position:
Click	here	to	view	code	image

WHERE	SALARY	NOT	LIKE	‘_cD%’

The	following	finds	any	values	that	are	not	a	5-digit	number	that	starts	with	2	and	ends
with	3:
Click	here	to	view	code	image

WHERE	PASSENGERID	NOT	LIKE	‘2___3’

The	following	example	demonstrates	using	the	NOT	LIKE	operator	to	display	a	list	of
values:
Click	here	to	view	code	image

SELECT	AIRCRAFTTYPE

FROM	AIRCRAFT

WHERE	AIRCRAFTTYPE	NOT	LIKE	‘B%’;

AIRCRAFTTYPE
––––––––––
Airbus	A310
Airbus	A310-300
Airbus	330	(200	&	300)	series
Airbus	340-300
Airbus	600	Series	E
Convair	500
McDonnell	Douglas	DC10
Embraer	(EMB)	120
Embraer	120
Fokker	F100
Fokker	F28-1000
Lockheed	L/1011	TR
McDonnell	Douglas	MD-11
McDonnell	Douglas	MD-11	Freigh
Westwind	Freighter

(15	row(s)	affected)

In	this	output,	the	aircraft	descriptions	starting	with	the	letter	B	were	not	displayed.

IS	NOT	NULL
The	IS	NULL	operator	is	negated	as	IS	NOT	NULL	to	test	for	values	that	are	not	NULL.
The	following	example	returns	only	NOT	NULL	rows:

WHERE	SEATING	IS	NOT	NULL

The	following	example	demonstrates	using	the	IS	NOT	NULL	operator	to	retrieve	a	list
of	aircraft	whose	seating	is	NOT	NULL:
Click	here	to	view	code	image

SELECT	*

FROM	AIRCRAFT_TMP

WHERE	SEATING	IS	NOT	NULL;

AircraftCode	AircraftType																			FreightOnly	Seating
––––	––––––––––	–––—	–––—
330										Airbus	330	(200	&	300)	series		0											335
742										Boeing	747-200																	0											420
743										Boeing	747-300																	0											420
744										Boeing	747-400																	0											400
747										Boeing	747	(all	series)								0											420
74L										Boeing	747SP																			0											314
772										Boeing	777-200																	0											375
773										Boeing	777-300																	0											420
777										Boeing	777																					0											375
D10										McDonnell	Douglas	DC10									0											399
L10										Lockheed	L/1011	TR													0											400
M11										McDonnell	Douglas	MD-11								0											323

(12	row(s)	affected)

NOT	EXISTS
EXISTS	is	negated	as	NOT	EXISTS.

The	following	example	searches	to	see	whether	the	PASSENGERID	3333333333	is
not	in	PASSENGERS:
Click	here	to	view	code	image

WHERE	NOT	EXISTS	(SELECT	EMP_ID	FROM	EMPLOYEE_TBL	WHERE	EMP_ID	=
‘3333333333’)

The	following	example	demonstrates	the	use	of	the	NOT	EXISTS	operator	with	a
subquery:
Click	here	to	view	code	image

SELECT	MAX(SEATING)

FROM	AIRCRAFT	A

WHERE	NOT	EXISTS	(SELECT	*

																			FROM	AIRCRAFT
																			WHERE	AIRCRAFTCODE=A.AIRCRAFTCODE	AND	SEATING	<	350);

––––––––––
420
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(1	row(s)	affected)

The	maximum	seating	for	the	table	displays	in	this	output	because	we	are	looking	for
records	that	don’t	exist	below	350.

Arithmetic	Operators
Arithmetic	operators	perform	mathematical	functions	in	SQL—the	same	as	in	most	other
languages.	The	four	conventional	operators	for	mathematical	functions	are

	+	(addition)

	-	(subtraction)

	*	(multiplication)

	/	(division)

Addition
Addition	is	performed	through	the	use	of	the	plus	(+)	symbol.

The	following	example	adds	the	TRAVELTIME	column	with	the	30	minute	delay
for	a	total	for	each	row	of	data:
Click	here	to	view	code	image

SELECT	TRAVELTIME	+	30	AS	DELAY_TIME	FROM	ROUTES;

This	example	returns	all	rows	where	the	total	of	the	TRAVELTIME	and	30	minute	delay
together	makes	the	travel	time	greater	than	18	hours:
Click	here	to	view	code	image

SELECT	*	FROM	ROUTES	WHERE	(TRAVELTIME	+	30)	>	1080;

Subtraction
Subtraction	is	performed	using	the	minus	(-)	symbol.

The	following	example	subtracts	a	bonus	value	of	$10,000.00	from	the	SALARY	column
for	the	difference:
Click	here	to	view	code	image

SELECT	SALARY	-	10000	FROM	EMPLOYEES;

This	example	returns	all	rows	where	the	SALARY	minus	the	bonus	is	greater	than	40000:
Click	here	to	view	code	image

SELECT	SALARY	FROM	EMPLOYEES	WHERE	SALARY	-	10000	>	‘40000’;

Multiplication
Multiplication	is	performed	using	the	asterisk	(*)	symbol.

The	following	example	multiplies	the	TRAVELTIME	column	by
FUELCOSTPERMINUTE:
Click	here	to	view	code	image

SELECT	TRAVELTIME	*	FUELCOSTPERMINUTE	AS	TOTAL_FUEL_COST	FROM	ROUTES;

The	next	example	returns	all	rows	where	the	product	of	the	TRAVELTIME	multiplied	by
FUELCOSTPERMINUTE	is	greater	than	$240,000.00:
Click	here	to	view	code	image

SELECT	ROUTEID,	ROUTECODE,	AIRPLANECODE,	DISTANCE,	TRAVELTIME,

TRAVELTIME	*	FUELCOSTPERMINUTE	AS	TOTAL_COST

FROM	ROUTES

WHERE	(TRAVELTIME	*	FUELCOSTPERMINUTE)>240000.00;

ROUTEID					ROUTECODE													AIRPLANECODE			DISTANCE				TRAVELTIME		TOTAL_COST
–––—	–––––––	––––—	–––—	–––—	–––-
2719								SQL-
MKF															EM2												16729							1079								242775.00
2720								MKF-
SQL															EM2												16729							1079								242775.00
3223								MKF-
LAX															E12												16786							1083								243675.00
3224								LAX-
MKF															E12												16786							1083								243675.00

(4	row(s)	affected)

Division
Division	is	performed	through	the	use	of	the	slash	(/)	symbol.

The	following	example	divides	the	TRAVELTIME	column	by	60:
Click	here	to	view	code	image

SELECT	TRAVELTIME	/	60	AS	TRAVEL_HOURS	FROM	ROUTES;

This	example	returns	all	rows	where	the	hours	of	the	trip	is	greater	than	17:
Click	here	to	view	code	image

SELECT	*	FROM	ROUTES	WHERE	(TRAVELTIME	/	60)	>	17;

Arithmetic	Operator	Combinations
You	can	use	the	arithmetic	operators	in	combination	with	one	another.	Remember	the	rules
of	precedence	in	basic	mathematics.	Multiplication	and	division	operations	are	performed
first	and	then	addition	and	subtraction	operations.	The	only	way	the	user	has	control	over
the	order	of	the	mathematical	operations	is	through	the	use	of	parentheses.	Parentheses
surrounding	an	expression	cause	that	expression	to	be	evaluated	as	a	block.

Precedence	is	the	order	in	which	expressions	are	resolved	in	a	mathematical	expression	or
with	embedded	functions	in	SQL.	The	following	table	shows	some	simple	examples	of
how	operator	precedence	can	affect	the	outcome	of	a	calculation:

In	the	following	examples,	notice	that	the	placement	of	parentheses	in	an	expression	does

not	affect	the	outcome	if	only	multiplication	and	division	are	involved.

Caution:	Ensure	Your	Math	Is	Correct

When	combining	arithmetic	operators,	remember	to	consider	the	rules	of
precedence.	The	absence	of	parentheses	in	a	statement	could	render	inaccurate
results.	Although	the	syntax	of	a	SQL	statement	is	correct,	a	logical	error	might
result.

The	following	are	some	more	examples	of	adding	a	$25	surcharge	to	the	fuel	cost	per
minute:
Click	here	to	view	code	image

SELECT	TRAVELTIME	*	FUELCOSTPERMINUTE	+	25	AS	TOTAL_COST
FROM	ROUTES
WHERE	(TRAVELTIME	*	FUELCOSTPERMINUTE	+	25)	>	240000;
SELECT	TRAVELTIME	*	(FUELCOSTPERMINUTE	+	25)	AS	TOTAL_COST
FROM	ROUTES
WHERE	(TRAVELTIME	*	(FUELCOSTPERMINUTE	+	25))	>	240000;

Because	parentheses	are	not	used,	mathematical	precedence	takes	effect,	altering	the	value
for	TOTAL_COST	tremendously	for	the	condition.

Summary
This	hour	introduced	you	to	various	operators	available	in	SQL.	You	have	learned	the
“hows”	and	“whys”	of	operators.	You	have	also	seen	examples	of	operators	used	by
themselves	and	in	various	combinations	with	one	another,	using	the	conjunctive-type
operators	AND	and	OR.	You	have	learned	the	basic	arithmetic	functions:	addition,
subtraction,	multiplication,	and	division.	Comparison	operators	test	equality,	inequality,
less	than	values,	and	greater	than	values.	Logical	operators	include	BETWEEN,	IN,	LIKE,
EXISTS,	ANY,	and	ALL.	You	can	now	see	how	elements	are	added	to	SQL	statements	to
further	specify	conditions	and	better	control	the	processing	and	retrieving	capabilities
provided	with	SQL.

Q&A
Q.	Can	I	have	more	than	one	AND	in	the	WHERE	clause?

A.	Yes.	In	fact,	you	can	use	all	the	operators	multiple	times.	An	example	would	be
Click	here	to	view	code	image

SELECT	*
FROM	AIRCRAFT
WHERE	SEATING	<	300
AND	FREIGHTONLY=0
AND	AIRCRAFTTYPE	LIKE	‘B%’

Q.	What	happens	if	I	use	single	quotation	marks	around	a	NUMBER	data	type	in	a
WHERE	clause?

A.	Your	query	still	processes,	but	quotation	marks	are	not	necessary	for	NUMBER	fields.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	True	or	false:	Both	conditions	when	using	the	OR	operator	must	be	TRUE.

2.	True	or	false:	All	specified	values	must	match	when	using	the	IN	operator.

3.	True	or	false:	The	AND	operator	can	be	used	in	the	SELECT	and	the	WHERE	clauses.

4.	True	or	false:	The	ANY	operator	can	accept	an	expression	list.

5.	What	is	the	logical	negation	of	the	IN	operator?

6.	What	is	the	logical	negation	of	the	ANY	and	ALL	operators?

7.	What,	if	anything,	is	wrong	with	the	following	SELECT	statements?

a.
Click	here	to	view	code	image

SELECT	AIRCRAFTTYPE
FROM	AIRCRAFT
WHERE	SEATING	BETWEEN	200,	300;

b.
Click	here	to	view	code	image

SELECT	DISTANCE	+	AIRPLANECODE
FROM	ROUTES;

c.
Click	here	to	view	code	image

SELECT	FIRSTNAME,	LASTNAME
FROM	PASSENGERS
WHERE	BIRTHDATE	BETWEEN	1980-01-01
AND	1990-01-01
AND	COUNTRYCODE	=	‘US’
OR	COUNTRYCODE	=	‘GB’
AND	PASSENGERID	LIKE	‘%55%;

Exercises
1.	Using	the	ROUTES	table,	write	a	SELECT	statement	that	returns	all	routes
originating	from	Indianapolis,	with	route	codes	starting	with	‘IND’.	Order	your
results	based	on	the	route	name	in	alphabetical	order	and	then	the	distance	of	the
route	going	from	largest	to	smallest.

2.	Rewrite	the	query	from	Exercise	1	to	show	only	those	flights	that	are	between	1000
and	2000	miles	long.

3.	Assuming	that	you	used	the	BETWEEN	operator	in	Exercise	2,	rewrite	your	SQL
statement	to	achieve	the	same	results	using	different	operators.	If	you	did	not	use	the
BETWEEN	operator,	do	so	now.

4.	Rewrite	your	query	so	that	instead	of	showing	results	where	the	distance	is	between
1000	and	2000	miles,	you	show	all	distances	except	that	range.	Show	at	least	two
ways	that	you	could	achieve	this	result.

5.	Write	a	SELECT	statement	that	returns	the	route	code,	distance,	and	travel	time,	and
then	calculates	a	cost	column	by	multiplying	travel	time	by	the	fuel	cost	per	minute
value	for	all	routes	originating	from	Indianapolis.	Order	your	results	from	most
expensive	routes	to	least	expensive.

6.	Rewrite	your	statement	from	Exercise	5	to	include	a	10%	fuel	surcharge	added	onto
the	cost.

7.	Enhance	your	statement	from	Exercise	6	by	including	those	routes	with	route	codes
IND-MFK,	IND-MYR,	and	IND-MDA.	There	are	at	least	two	ways	to	write	this
constraint.

8.	Now	rewrite	your	statement	from	Exercise	7,	include	an	additional	column	called
COST_PER_MILE,	and	use	the	distance	column	that	is	in	miles	to	calculate	the
resulting	value.	Pay	special	attention	to	parentheses	in	your	answer.

Hour	9.	Summarizing	Data	Results	from	a	Query

What	You’ll	Learn	in	This	Hour:

	Definition	of	functions

	Using	aggregate	functions

	Summarizing	data	with	aggregate	functions

	Results	from	using	functions

In	this	hour,	you	learn	about	SQL’s	aggregate	functions.	You	can	perform	a	variety	of
useful	functions	with	aggregate	functions,	such	as	getting	the	highest	total	of	a	sale	or
counting	the	number	of	orders	processed	on	a	given	day.	The	real	power	of	aggregate
functions	will	be	discussed	in	the	next	hour	when	you	tackle	the	GROUP	BY	clause.

Aggregate	Functions
Functions	are	keywords	in	SQL	used	to	manipulate	values	within	columns	for	output
purposes.	A	function	is	a	command	normally	used	with	a	column	name	or	expression	that
processes	the	incoming	data	to	produce	a	result.	SQL	contains	several	types	of	functions.
This	hour	covers	aggregate	functions.	An	aggregate	function	provides	summarization
information	for	a	SQL	statement,	such	as	counts,	totals,	and	averages.

The	basic	set	of	aggregate	functions	discussed	in	this	hour	are

	COUNT

	SUM

	MAX

	MIN

	AVG

The	following	query	lists	the	employee	information	from	the	EMPLOYEES	table.	Note
that	some	of	the	employees	do	not	have	data	assigned	in	some	of	the	columns.	We	use	this
data	for	most	of	this	hour’s	examples.
Click	here	to	view	code	image

SELECT	TOP	10	EMPLOYEEID,LASTNAME,
	CITY,STATE,PAYRATE,SALARY
	FROM	EMPLOYEES;

EMPLOYEEID		LASTNAME										CITY															STATE						PAYRATE								SALARY
–––—	–––––—	––––––	–––-	––––—	––—
1											Iner														Red
Dog												NULL																						54000.00
2											Denty													Errol														NH									22.24										NULL
3											Sabbah												Errol														NH									15.29										NULL
4											Loock													Errol														NH									12.88										NULL
5											Sacks													Errol														NH									23.61										NULL
6											Arcoraci										Alexandria									LA									24.79										NULL

7											Astin													Espanola											NM									18.03										NULL
8											Contreraz									Espanola											NM									NULL											60000.00
9											Capito												Espanola											NM									NULL											52000.00
10										Ellamar											Espanola											NM									15.64										NULL

(10	row(s)	affected)

COUNT
You	use	the	COUNT	function	to	count	rows	or	values	of	a	column	that	do	not	contain	a
NULL	value.	When	used	within	a	query,	the	COUNT	function	returns	a	numeric	value.	You
can	also	use	the	COUNT	function	with	the	DISTINCT	command	to	only	count	the	distinct
rows	of	a	dataset.	ALL	(opposite	of	DISTINCT)	is	the	default;	it	is	not	necessary	to
include	ALL	in	the	syntax.	Duplicate	rows	are	counted	if	DISTINCT	is	not	specified.	One
other	option	with	the	COUNT	function	is	to	use	it	with	an	asterisk.	COUNT(*)	counts	all
the	rows	of	a	table	including	duplicates,	regardless	of	whether	a	NULL	value	is	contained
in	a	column.

Note:	DISTINCT	Can	Be	Used	Only	in	Certain	Circumstances

You	cannot	use	the	DISTINCT	command	with	COUNT(*),	only	with	COUNT
(column_name).

The	syntax	for	the	COUNT	function	follows:
Click	here	to	view	code	image

COUNT	[(*)	|	(DISTINCT	|	ALL)]	(COLUMN	NAME)

This	example	counts	all	employee	IDs:
Click	here	to	view	code	image

SELECT	COUNT(EMPLOYEEID)	FROM	EMPLOYEES

This	example	counts	only	the	distinct	rows:
Click	here	to	view	code	image

SELECT	COUNT(DISTINCT	SALARY)FROM	EMPLOYEES

This	example	counts	all	rows	for	SALARY:
Click	here	to	view	code	image

SELECT	COUNT(ALL	SALARY)FROM	EMPLOYEES

This	final	example	counts	all	rows	of	the	EMPLOYEES	table:
Click	here	to	view	code	image

SELECT	COUNT(*)	FROM	EMPLOYEES

COUNT(*)	is	used	in	the	following	example	to	get	a	count	of	all	records	in	the
EMPLOYEES	table.	There	are	5,611	employees.

SELECT	COUNT(*)
FROM	EMPLOYEES;
–––—
5611

(1	row(s)	affected)

Caution:	COUNT(*)	Is	Different	from	Other	Count	Variations

COUNT(*)	produces	slightly	different	calculations	than	other	count	variations.
This	is	because	when	the	COUNT	function	is	used	with	the	asterisk,	it	counts	the
rows	in	the	returned	result	set	without	regard	to	duplicates	and	NULL	values.	This	is
an	important	distinction.	If	you	need	your	query	to	return	a	count	of	a	particular
field	and	include	NULLs,	you	need	to	use	a	function	such	as	ISNULL	to	replace	the
NULL	values.

COUNT(EMPLOYEEID)	is	used	in	the	next	example	to	get	a	count	of	all	the	employee
identification	IDs	that	exist	in	the	table.	The	returned	count	is	the	same	as	the	last	query
because	all	employees	have	an	identification	number.

SELECT	COUNT(EMPLOYEEID)
FROM	EMPLOYEES;
–––—
5611

(1	row(s)	affected)

COUNT([STATE])	is	used	in	the	following	example	to	get	a	count	of	all	the	employee
records	that	have	a	state	assigned.	Look	at	the	difference	between	the	two	counts.	The
difference	is	the	number	of	employees	who	have	NULL	in	the	STATE	column.
Click	here	to	view	code	image

SELECT	COUNT([STATE])
FROM	EMPLOYEES;
–––—
5147
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(1	row(s)	affected)

The	following	examples	obtain	a	count	of	all	salary	amounts	and	then	all	the	distinct
salary	amounts	in	the	EMPLOYEES	table.
Click	here	to	view	code	image

SELECT	COUNT(SALARY)
FROM	EMPLOYEES;
–––—
1359
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(1	row(s)	affected)

SELECT	COUNT(DISTINCT	SALARY)
FROM	EMPLOYEES;
–––—
45
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(1	row(s)	affected)

The	SALARY	column	had	a	lot	of	matching	amounts,	so	the	DISTINCT	values	make	the

counts	drop	dramatically.

Note:	Data	Types	Do	Not	Use	COUNT

Because	the	COUNT	function	counts	the	rows,	data	types	do	not	play	a	part.	The
rows	can	contain	columns	with	any	data	type.	The	only	thing	that	actually	counts	is
whether	the	value	is	NULL.

SUM
The	SUM	function	returns	a	total	on	the	values	of	a	column	for	a	group	of	rows.	You	can
also	use	the	SUM	function	with	DISTINCT.	When	you	use	SUM	with	DISTINCT,	only
the	distinct	rows	are	totaled,	which	might	not	have	much	purpose.	Your	total	is	not
accurate	in	that	case	because	rows	of	data	are	omitted.

The	syntax	for	the	SUM	function	follows:
Click	here	to	view	code	image

SUM	([DISTINCT]	COLUMN	NAME)

Caution:	SUM	Must	Be	Numeric

The	value	of	an	argument	must	be	numeric	to	use	the	SUM	function.	You	cannot	use
the	SUM	function	on	columns	that	have	a	data	type	other	than	numeric,	such	as
character	or	date.

This	example	totals	the	salaries:
Click	here	to	view	code	image

SELECT	SUM(SALARY)	FROM	EMPLOYEES

This	example	totals	the	distinct	salaries:
Click	here	to	view	code	image

SELECT	SUM(DISTINCT	SALARY)	FROM	EMPLOYEES

In	the	following	query,	the	sum,	or	total	amount,	of	all	salary	values	is	retrieved	from	the
EMPLOYEES	table:
Click	here	to	view	code	image

SELECT	SUM(SALARY)
FROM	EMPLOYEES;
––––––––––
70791000.00
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(1	row(s)	affected)

Observe	the	way	the	DISTINCT	command	in	the	following	example	skews	the	previous
results	by	68	million	dollars.	This	is	why	it	is	rarely	useful.
Click	here	to	view	code	image

SELECT	SUM(DISTINCT	COST)
FROM	EMPLOYEES;

––––––––––
2340000.00
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(1	row(s)	affected)

The	following	query	demonstrates	that	although	some	aggregate	functions	require	numeric
data,	this	is	only	limited	to	the	type	of	data.	Here	the	ZIP	column	of	the	EMPLOYEES
table	shows	that	the	implicit	conversion	of	the	VARCHAR	data	to	a	numeric	type	is
supported	in	Oracle:

SELECT	SUM(ZIP)
FROM	EMPLOYEES;
SUM(ZIP)
–––—
280891448

Some	aggregate	functions	require	numeric	data;	this	is	only	limited	to	the	type	of	data.	If
the	data	can	be	converted	implicitly,	for	example,	the	string	'12345'	to	an	integer,	then
you	can	use	the	aggregate	function.	When	you	use	a	type	of	data	that	cannot	be	implicitly
converted	to	a	numeric	type,	such	as	the	POSITION	column,	it	results	in	an	error,	as	in
the	following	example:
Click	here	to	view	code	image

SELECT	SUM(POSITION)
FROM	EMPLOYEES;
Msg	8117,	Level	16,	State	1,	Line	1
Operand	data	type	varchar	is	invalid	for	sum	operator.

AVG
The	AVG	function	finds	the	average	value	for	a	given	group	of	rows.	When	used	with	the
DISTINCT	command,	the	AVG	function	returns	the	average	of	the	distinct	rows.	The
syntax	for	the	AVG	function	follows:
Click	here	to	view	code	image

AVG	([DISTINCT]	COLUMN	NAME)

Note:	AVG	Must	Be	Numeric

The	value	of	the	argument	must	be	numeric	for	the	AVG	function	to	work.

The	average	value	for	all	values	in	the	EMPLOYEES	table’s	SALARY	column	is	retrieved
in	the	following	example:
Click	here	to	view	code	image

SELECT	AVG(SALARY)
FROM	EMPLOYEES;
––––––––––
52090.507726
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(1	row(s)	affected)

This	example	returns	the	distinct	average	salary:

Click	here	to	view	code	image
SELECT	AVG(DISTINCT	SALARY)
FROM	EMPLOYEES;
––––––––––
52000.000000
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(1	row(s)	affected)

Caution:	Sometimes	Your	Data	Is	Truncated

In	some	implementations,	the	results	of	your	query	might	be	truncated	to	the
precision	of	the	data	type.	You	need	to	review	your	database	system’s
documentation	to	ensure	you	understand	what	the	normal	precision	for	the	various
data	types	is.	This	will	prevent	you	from	unnecessarily	truncating	data	and	possibly
getting	an	unexpected	result	due	to	the	data	not	being	of	the	proper	precision.

The	next	example	uses	two	aggregate	functions	in	the	same	query.	Because	some
employees	are	paid	hourly	and	others	are	on	salary,	you	want	to	retrieve	the	average	value
for	both	PAYRATE	and	SALARY.
Click	here	to	view	code	image

SELECT	AVG(PAYRATE)	AS	AVG_PAYRATE,	AVG(SALARY)	AS	AVG_SALARY
FROM	EMPLOYEES;
AVG_PAYRATE																				AVG_SALARY
––––––––––	––––––––––
18.473012																						52090.507726
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(1	row(s)	affected)

Notice	how	the	use	of	aliases	makes	the	output	more	readable	with	multiple	aggregate
values.	Also	remember	that	the	aggregate	function	can	work	on	any	numeric	data.	So	you
can	perform	calculations	within	the	parentheses	of	the	function	as	well.	So	if	you	need	to
get	the	average	hourly	rate	of	salaried	employees	to	compare	to	the	average	rate	of	hourly
employees,	you	could	write	the	following:
Click	here	to	view	code	image

SELECT	AVG(PAYRATE)	AS	AVG_PAYRATE,	AVG(SALARY/2040)	AS	AVG_SALARY_RATE
FROM	EMPLOYEES;
AVG_PAYRATE																				AVG_SALARY_RATE
––––––––––	––––––––––
18.473012																						25.5345625
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(1	row(s)	affected)

MAX
The	MAX	function	returns	the	maximum	value	from	the	values	of	a	column	in	a	group	of
rows.	NULL	values	are	ignored	when	using	the	MAX	function.	Using	MAX	with	the
DISTINCT	command	is	an	option.	However,	because	the	maximum	value	for	all	the	rows
is	the	same	as	the	distinct	maximum	value,	DISTINCT	is	useless.

The	syntax	for	the	MAX	function	is
Click	here	to	view	code	image

MAX([DISTINCT]	COLUMN	NAME)

The	following	example	returns	the	highest	SALARY	in	the	EMPLOYEES	table:
Click	here	to	view	code	image

SELECT	MAX(SALARY)
FROM	EMPLOYEES;
––––––––––
74000.00
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(1	row(s)	affected)

This	example	returns	the	highest	distinct	salary:
Click	here	to	view	code	image

SELECT	MAX(DISTINCT	SALARY)
FROM	EMPLOYEES;
––––––––––
74000.00
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(1	row(s)	affected)

You	can	also	use	aggregate	functions	such	as	MAX	and	MIN	(covered	in	the	next	section)
on	character	data.	In	the	case	of	these	values,	collation	of	your	database	comes	into	play
again.	Most	commonly	your	database	collation	is	set	to	a	dictionary	order,	so	the	results
are	ranked	according	to	that.	For	example,	say	you	perform	a	MAX	on	the	CITY	column	of
the	employees	table:
Click	here	to	view	code	image

SELECT	MAX(CITY)	AS	MAX_CITY
FROM	EMPLOYEES;
MAX_CITY
––––––––––
Zwara

(1	row(s)	affected)

In	this	instance,	the	function	returned	the	largest	value	according	to	a	dictionary	ordering
of	the	data	in	the	column.

MIN
The	MIN	function	returns	the	minimum	value	of	a	column	for	a	group	of	rows.	NULL
values	are	ignored	when	using	the	MIN	function.	Using	MIN	with	the	DISTINCT
command	is	an	option.	However,	because	the	minimum	value	for	all	rows	is	the	same	as
the	minimum	value	for	distinct	rows,	DISTINCT	is	useless.

The	syntax	for	the	MIN	function	is
Click	here	to	view	code	image

MIN([DISTINCT]	COLUMN	NAME)

The	following	example	returns	the	lowest	SALARY	in	the	EMPLOYEES	table:
Click	here	to	view	code	image

SELECT	MIN(SALARY)
FROM	EMPLOYEES;
––––––––––
30000.00
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(1	row(s)	affected)

This	example	returns	the	lowest	distinct	salary:
Click	here	to	view	code	image

SELECT	MIN(DISTINCT	SALARY)
FROM	EMPLOYEES;
––––––––––
30000.00
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(1	row(s)	affected)

Note:	DISTINCT	and	Aggregate	Functions	Don’t	Always	Mix

One	important	thing	to	keep	in	mind	when	using	aggregate	functions	with	the
DISTINCT	command	is	that	your	query	might	not	return	the	wanted	results.	The
purpose	of	aggregate	functions	is	to	return	summarized	data	based	on	all	rows	of
data	in	a	table.	When	DISTINCT	is	used	it	is	applied	first	to	the	results	and	then
those	results	are	passed	on	to	the	aggregate	function,	which	can	dramatically	alter
the	results.	You	need	to	ensure	that	when	you	work	with	DISTINCT	with	aggregate
functions	that	you	understand	this.

As	with	the	MAX	function,	the	MIN	function	can	work	against	character	data	and	returns
the	minimum	value	according	to	the	dictionary	ordering	of	the	data.
Click	here	to	view	code	image

SELECT	MIN(CITY)	AS	MIN_CITY
FROM	EMPLOYEES;
MIN_CITY
––––––––––
	AFB	MunicipalCharleston	SC

(1	row(s)	affected)

Summary
Aggregate	functions	can	be	useful	and	are	quite	simple	to	use.	In	this	hour	you	learned
how	to	count	values	in	columns,	count	rows	of	data	in	a	table,	get	the	maximum	and
minimum	values	for	a	column,	figure	the	sum	of	the	values	in	a	column,	and	figure	the
average	value	for	values	in	a	column.	Remember	that	NULL	values	are	not	considered
when	using	aggregate	functions,	except	when	using	the	COUNT	function	in	the	format
COUNT(*).

Aggregate	functions	are	the	first	functions	in	SQL	that	you	have	learned	in	this	book,	but

more	follow	in	the	coming	hours.	You	can	also	use	aggregate	functions	for	group	values,
which	are	discussed	during	the	next	hour.	As	you	learn	about	other	functions,	you	see	that
the	syntaxes	of	most	functions	are	similar	to	one	another	and	that	their	concepts	of	use	are
relatively	easy	to	understand.

Q&A
Q.	Why	are	NULL	values	ignored	when	using	the	MAX	or	MIN	function?

A.	A	NULL	value	means	that	nothing	is	there,	so	there	would	be	no	maximum	or
minimum	value.

Q.	Why	don’t	data	types	matter	when	using	the	COUNT	function?

A.	The	COUNT	function	counts	only	rows.

Q.	Does	the	data	type	matter	when	using	the	SUM	or	AVG	function?

A.	Not	exactly.	If	the	data	can	be	implicitly	converted	to	numeric	data,	then	it	will	still
work.	It’s	less	a	function	of	what	the	data	type	is	and	more	about	what	data	is	stored
in	it.

Q.	Are	you	limited	to	using	only	column	names	inside	of	aggregate	functions?

A.	No,	you	can	use	any	type	of	calculation	or	formula	as	long	as	the	output	corresponds
to	the	proper	type	of	data	that	the	function	is	expecting	to	use.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	True	or	false:	The	AVG	function	returns	an	average	of	all	rows	from	a	SELECT
column,	including	any	NULL	values.

2.	True	or	false:	The	SUM	function	adds	column	totals.

3.	True	or	false:	The	COUNT(*)	function	counts	all	rows	in	a	table.

4.	True	or	false:	The	COUNT([column	name])	function	counts	NULL	values.

5.	Will	the	following	SELECT	statements	work?	If	not,	what	fixes	the	statements?

a.
SELECT	COUNT	*
FROM	EMPLOYEES;

b.
Click	here	to	view	code	image

SELECT	COUNT(EMPLOYEEID),	SALARY
FROM	EMPLOYEES;

c.
Click	here	to	view	code	image

SELECT	MIN(PAYRATE),	MAX(SALARY)
FROM	EMPLOYEES
WHERE	SALARY	>	50000;

d.
Click	here	to	view	code	image

SELECT	COUNT(DISTINCT	EMPLOYEEID)	FROM	EMPLOYEES;

e.
Click	here	to	view	code	image

SELECT	AVG(LASTNAME)	FROM	EMPLOYEES;

f.
Click	here	to	view	code	image

SELECT	AVG(CAST(ZIP	AS	INT))	FROM	EMPLOYEES;

Exercises
1.	Use	the	EMPLOYEES	table	to	construct	SQL	statements	to	solve	the	following
exercises:

a.	What	is	the	average	salary?

b.	What	is	the	maximum	pay	rate	for	hourly	employees?

c.	What	are	the	total	salaries?

d.	What	is	the	minimum	pay	rate?

e.	How	many	rows	are	in	the	table?

2.	Write	a	query	to	determine	how	many	employees	are	in	the	company	whose	last
names	begin	with	a	G.

3.	Write	a	query	to	determine	the	minimum	and	maximum	salary	and	pay	rates	per	city
for	employees.

4.	Write	two	sets	of	queries	to	find	the	first	employee	name	and	last	employee	name
when	they	are	listed	in	alphabetical	order.

5.	Write	a	query	to	perform	an	AVG	function	on	the	employee	names.	Does	the
statement	work?	Determine	why	it	is	that	you	got	that	result.

6.	Write	a	query	to	display	the	average	value	of	employees’	salaries	that	takes	NULL
values	into	account.	Hint:	You	won’t	be	using	the	AVG	function.

Hour	10.	Sorting	and	Grouping	Data

What	You’ll	Learn	in	This	Hour:

	Why	you	would	want	to	group	data

	How	to	group	results	with	the	GROUP	BY	clause

	Group	value	functions

	The	how	and	why	of	group	functions

	Grouping	by	columns

	GROUP	BY	versus	ORDER	BY

	Reducing	groups	with	the	HAVING	clause

You	have	learned	how	to	query	the	database	and	return	data	in	an	organized	fashion.	You
have	also	learned	how	to	sort	data	from	a	query.	During	this	hour,	you	learn	how	to	break
returned	data	from	a	query	into	groups	for	improved	readability.

Why	Group	Data?
Grouping	data	is	the	process	of	combining	columns	with	duplicate	values	in	a	logical
order.	For	example,	a	database	might	contain	information	about	employees;	many
employees	live	in	different	cities,	but	some	employees	live	in	the	same	city.	You	might
want	to	execute	a	query	that	shows	employee	information	for	each	particular	city.	You
would	group	employee	information	by	city	and	create	a	summarized	report.

Or	perhaps	you	want	to	figure	the	average	salary	paid	to	employees	according	to	each	city.
You	can	do	this	by	using	the	aggregate	function	AVG	on	the	SALARY	column,	as	you
learned	in	the	previous	hour,	and	by	using	the	GROUP	BY	clause	to	group	the	output	by
city.

Grouping	data	is	accomplished	through	the	use	of	the	GROUP	BY	clause	of	a	SELECT
statement	(query).	In	Hour	9,	“Summarizing	Data	Results	from	a	Query,”	you	learned	how
to	use	aggregate	functions.	In	this	lesson,	you	see	how	to	use	aggregate	functions	with	the
GROUP	BY	clause	to	display	results	more	effectively.

The	GROUP	BY	Clause
The	GROUP	BY	clause	is	used	in	collaboration	with	the	SELECT	statement	to	arrange
identical	data	into	groups.	This	clause	follows	the	WHERE	clause	in	a	SELECT	statement
and	precedes	the	ORDER	BY	clause.

The	position	of	the	GROUP	BY	clause	in	a	query	follows:
SELECT
FROM
WHERE
GROUP	BY

ORDER	BY

The	following	is	the	SELECT	statement’s	syntax,	including	the	GROUP	BY	clause:
Click	here	to	view	code	image

SELECT	COLUMN1,	COLUMN2
FROM	TABLE1,	TABLE2
WHERE	CONDITIONS
GROUP	BY	COLUMN1,	COLUMN2
ORDER	BY	COLUMN1,	COLUMN2

This	ordering	normally	takes	a	little	getting	used	to	when	writing	your	first	queries	with
the	GROUP	BY	clause;	however,	it	is	logical.	The	GROUP	BY	clause	is	normally	a	much
more	CPU-intensive	operation,	and	if	you	do	not	constrain	the	rows	provided	to	it,	you	are
grouping	unnecessary	data	that	would	later	be	discarded.	So	you	intentionally	reduce	the
data	set	with	the	WHERE	clause	so	that	you	perform	your	grouping	only	on	the	rows	you
need.

You	can	use	the	ORDER	BY	statement,	but	normally	the	relational	database	management
system	(RDBMS)	also	orders	the	results	by	the	column	ordering	in	the	GROUP	BY	clause,
which	is	discussed	more	in	depth	later	in	this	hour.	So	unless	you	need	to	order	the	values
in	a	different	pattern	than	the	GROUP	BY	clause,	the	ORDER	BY	clause	is	redundant.
However,	sometimes	it	is	provided	because	you	use	aggregate	functions	in	the	SELECT
statement	that	are	not	in	the	GROUP	BY	clause	or	because	your	particular	RDBMS
functions	slightly	differently	from	the	standard.

The	following	sections	explain	how	to	use	the	GROUP	BY	clause	and	provide	examples	of
using	it	in	a	variety	of	situations.

Group	Functions
Typical	group	functions—those	that	the	GROUP	BY	clause	uses	to	arrange	data	in	groups
—include	AVG,	MAX,	MIN,	SUM,	and	COUNT.	These	are	the	aggregate	functions	that	you
learned	about	in	Hour	9.	Remember	that	the	aggregate	functions	were	used	for	single
values	in	Hour	9;	now	you	use	the	aggregate	functions	for	group	values.

Grouping	Selected	Data
Grouping	data	is	simple.	The	selected	columns	(the	column	list	following	the	SELECT
keyword	in	a	query)	are	the	columns	you	can	reference	in	the	GROUP	BY	clause.	If	a
column	is	not	in	the	SELECT	statement,	you	cannot	use	it	in	the	GROUP	BY	clause.	How
can	you	group	data	on	a	report	if	the	data	is	not	displayed?

If	the	column	name	has	been	qualified,	the	qualified	name	must	go	into	the	GROUP	BY
clause.	The	column	name	can	also	be	represented	by	a	number,	which	is	discussed	later	in
the	“Representing	Column	Names	with	Numbers”	section.	When	grouping	the	data,	the
order	of	columns	grouped	does	not	have	to	match	the	column	order	in	the	SELECT	clause.

Creating	Groups	and	Using	Aggregate	Functions
The	SELECT	clause	has	conditions	that	must	be	met	when	using	GROUP	BY.
Specifically,	whatever	columns	are	selected	must	appear	in	the	GROUP	BY	clause,	except
for	any	aggregate	values.	Should	the	columns	in	the	SELECT	clause	be	qualified,	the
qualified	names	of	the	columns	must	be	used	in	the	GROUP	BY	clause.	Some	examples	of
syntax	for	the	GROUP	BY	clause	are	shown	next.

The	following	SQL	statement	selects	the	DISTANCE	and	the	SOURCECITY	from	the
EMPLOYEE_TBL	and	groups	the	data	returned	by	SOURCECITY	and	then	DISTANCE:
Click	here	to	view	code	image

SELECT	DISTANCE,	SOURCECITY
FROM	VW_FLIGHTINFO
GROUP	BY	SOURCECITY,	DISTANCE;

This	SQL	statement	returns	the	SOURCECITY	and	the	total	of	the	DISTANCE	column.
Then	it	groups	the	results	by	the	SOURCECITY:
Click	here	to	view	code	image

SELECT	SOURCECITY,	SUM(DISTANCE)
FROM	VW_FLIGHTINFO
GROUP	BY	SOURCECITY;

This	SQL	statement	returns	the	distance	traveled	for	flights	that	took	off	during	the	month
of	May	2013:
Click	here	to	view	code	image

SELECT	SUM(DISTANCE)	AS	TOTAL_DISTANCE
FROM	VW_FLIGHTINFO
WHERE	FLIGHTSTART	BETWEEN	‘2013-05-01’	AND	‘2013-06-01’;

TOTAL_DISTANCE
––––—
62587932

(1	row(s)	affected)

This	SQL	statement	returns	the	totals	for	the	different	groups	of	distances:
Click	here	to	view	code	image

SELECT	SUM(DISTANCE)	AS	TOTAL_DISTANCE
FROM	VW_FLIGHTINFO
GROUP	BY	SOURCECITY;
TOTAL_DISTANCE
––––—
1111579
1145224
1825544
276003
617604
.
.
.

(166	row(s)	affected)

Practical	examples	using	real	data	follow.	In	this	first	example,	you	can	see	three	distinct

cities	in	the	VW_FLIGHTINFO	view.	A	view	is	just	like	a	table	in	terms	of	selecting	data
from	it.	We’ll	go	into	greater	depth	about	views	in	later	chapters.
Click	here	to	view	code	image

SELECT	DISTINCT	SOURCECITY

FROM	VW_FLIGHTINFO;

SOURCECITY
––––––––––
Niagara	Falls
Taylor
Fayetteville
Chicago
Hattiesburg/Laurel	MS
Clovis

In	the	following	example,	you	select	the	city	and	a	count	of	all	records	for	each	city.	You
receive	a	count	on	each	of	the	three	distinct	cities	because	you	use	a	GROUP	BY	clause:
Click	here	to	view	code	image

SELECT	SOURCECITY,	COUNT(*)

FROM	VW_FLIGHTINFO

WHERE	SOURCECITY	LIKE	‘A%’

GROUP	BY	SOURCECITY;

SOURCECITY
––––––––––	–––—
Albany																									453
Algona																									135
Arcata																									253
Augusta	GA																					211
Ardmore																								225
Athens																									427
Anchorage																						123
Atlanta																								61
Austin																									576
Alexandria																					810
Aiken																										396

(11	row(s)	affected)

In	the	following	example,	you	retrieve	the	average	pay	rate	and	salary	on	each	distinct	city
using	the	aggregate	function	AVG	from	the	EMPLOYEES	table.	There	is	no	average	salary
for	ADRIAN	because	there	are	no	employees	living	there	who	are	paid	salary:
Click	here	to	view	code	image

SELECT	CITY,	AVG(PAYRATE)	AS	AVG_PAYRATE,	AVG(SALARY)	AS	AVG_SALARY

FROM	EMPLOYEES

GROUP	BY	CITY;

CITY																											AVG_PAYRATE																				AVG_SALARY
––––––––––	––––––––––	–––––––
AFB	MunicipalCharleston	SC					NULL																											51000.000000
Downtown	MemorialSpartanburg			19.320000																						56000.000000
Aberdeen																							19.326000																						63000.000000
Abilene																								13.065000																						66000.000000
Abingdon																							20.763333																						31000.000000
Adak	Island																				20.545000																						56000.000000
Adrian																									21.865000																						NULL
.

.

.

Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(1865	row(s)	affected)

In	the	next	example,	you	combine	the	use	of	multiple	components	in	a	query	to	return
grouped	data.	You	still	want	to	see	the	average	pay	rate	and	salary,	but	only	for	cities	like
INDIANAPOLIS,	CHICAGO,	and	NEW_YORK.	You	are	forced	to	group	the	data	by	CITY
because	you	use	aggregate	functions	on	the	other	columns.	Lastly,	you	want	to	order	the
report	by	2	and	then	3,	which	are	the	average	pay	rate	and	then	average	salary,
respectively:
Click	here	to	view	code	image

SELECT	CITY,	AVG(PAYRATE)	AS	AVG_PAYRATE,	AVG(SALARY)	AS	AVG_SALARY

FROM	EMPLOYEES

WHERE	CITY	LIKE	‘INDIANAPOLIS%’

OR	CITY	LIKE	‘CHICAGO%’

OR	CITY	LIKE	‘NEW	YORK%’

GROUP	BY	CITY

ORDER	BY	2,3;

CITY																											AVG_PAYRATE																				AVG_SALARY
––––––––––	––––––––––	–––––––
Chicago																								19.642142																						35333.333333
New	York																							19.701904																						42666.666666
Indianapolis	IN																21.445000																						NULL
Chicago	Il																					22.040000																						32000.000000
New	York	NY																				23.740000																						NULL
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(5	row(s)	affected)
40000

Values	are	sorted	before	NULL	values;	therefore,	the	record	for	CHICAGO	is	displayed
first.	If	the	order	of	the	columns	of	the	ORDER	BY	was	switched,	then	NEW	YORK	would
be	first	and	then	INDIANAPOLIS,	and	NEW	YORK	NY	would	be	pushed	to	the	bottom
of	the	list.

The	last	example	in	this	section	shows	the	use	of	the	MAX	and	MIN	aggregate	functions
with	the	GROUP	BY	clause	to	get	the	maximum	PAYRATE	and	the	minimum	SALARY	for
the	cities	of	INDIANAPOLIS,	CHICAGO,	and	NEW	YORK	grouped	by	CITY:
Click	here	to	view	code	image

SELECT	CITY,	MAX(PAYRATE)	AS	MAX_PAYRATE,	MIN(SALARY)	AS	MIN_SALARY

FROM	EMPLOYEES

WHERE	CITY	LIKE	‘INDIANAPOLIS%’

OR	CITY	LIKE	‘CHICAGO%’

OR	CITY	LIKE	‘NEW	YORK%’

GROUP	BY	CITY;

CITY																											MAX_PAYRATE																				MIN_SALARY
––––––––––	––––––––––	–––––––
Chicago																								24.31																										31000.00
Chicago	Il																					22.04																										32000.00
Indianapolis	IN																23.15																										NULL
New	York																							24.69																										33000.00

New	York	NY																				23.74																										NULL
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(5	row(s)	affected)

GROUP	BY	Versus	ORDER	BY
You	should	understand	that	the	GROUP	BY	clause	works	the	same	as	the	ORDER	BY
clause	in	that	both	sort	data.	Specifically,	you	use	the	ORDER	BY	clause	to	sort	data	from
a	query.	The	GROUP	BY	clause	also	sorts	data	from	a	query	to	properly	group	the	data.

However,	there	are	some	differences	and	disadvantages	of	using	GROUP	BY	instead	of
ORDER	BY	for	sorting	operations:

	All	non-aggregate	columns	selected	must	be	listed	in	the	GROUP	BY	clause.

	The	GROUP	BY	clause	is	generally	not	necessary	unless	you	use	aggregate
functions.

An	example	of	performing	sort	operations	utilizing	the	GROUP	BY	clause	in	place	of	the
ORDER	BY	clause	is	shown	next:
Click	here	to	view	code	image

SELECT	LASTNAME,	FIRSTNAME,	CITY
FROM	EMPLOYEES
GROUP	BY	LASTNAME;

Msg	8120,	Level	16,	State	1,	Line	1

The	column	EMPLOYEES.FirstName	is	invalid	in	the	select	list	because	it	is	not
contained	in	either	an	aggregate	function	or	the	GROUP	BY	clause.

Note:	Error	Messages	Differ

Different	SQL	implementations	return	errors	in	different	formats.

In	this	example,	a	SQL	Server	database	server	received	an	error	stating	that	FIRSTNAME
is	invalid	and	that	this	was	not	a	proper	GROUP	BY	expression.	Remember	that	all
columns	and	expressions	in	the	SELECT	statement	must	be	listed	in	the	GROUP	BY
clause,	with	the	exception	of	aggregate	columns	(those	columns	targeted	by	an	aggregate
function).

In	the	next	example,	the	previous	problem	is	solved	by	adding	all	the	expressions	in	the
SELECT	statement	to	the	GROUP	BY	clause:
Click	here	to	view	code	image

SELECT	LASTNAME,	FIRSTNAME,	CITY

FROM	EMPLOYEES

GROUP	BY	LASTNAME,	FIRSTNAME,	CITY;

LASTNAME																							FIRSTNAME																						CITY
––––––––––	––––––––––	–––––––
Aarant																									Sidney																									Columbia
Abbas																										Gail																											Port	Hueneme	CA
Abbay																										Demetrice																						Shangri-la

Abbington																						Gaynelle																							Forrest	City
Abbington																						Gaynelle																							Sparta
Abdelal																								Marcelo																								Benson
.
.
.

(5611	row(s)	affected)

In	this	example,	the	same	columns	were	selected	from	the	same	table,	but	all	columns	in
the	GROUP	BY	clause	are	listed	as	they	appeared	after	the	SELECT	keyword.	The	results
are	ordered	by	LASTNAME	first,	FIRSTNAME	second,	and	CITY	third.	These	results
could	have	been	accomplished	easier	with	the	ORDER	BY	clause;	however,	it	might	help
you	better	understand	how	the	GROUP	BY	clause	works	if	you	can	visualize	how	it	must
first	sort	data	to	group	data	results.

The	following	example	shows	a	SELECT	statement	from	EMPLOYEES	and	uses	the
GROUP	BY	clause	to	order	by	CITY:
Click	here	to	view	code	image

SELECT	CITY,	LASTNAME

FROM	EMPLOYEES

GROUP	BY	CITY,	LASTNAME;

CITY																											LASTNAME
––––––––––	––––––––––
	AFB	MunicipalCharleston	SC				Tobey
	Downtown	MemorialSpartanburg		Bovey
	Downtown	MemorialSpartanburg		Fawbush
	Downtown	MemorialSpartanburg		Sundin
	Downtown	MemorialSpartanburg		Vignaux
Aberdeen																							Apkin
Aberdeen																							Blystone
.
.
.

(5611	row(s)	affected)

Notice	the	order	of	data	in	the	previous	results,	as	well	as	the	LASTNAME	of	the	individual
for	each	CITY.

In	the	following	example,	all	employee	records	in	the	EMPLOYEES	table	are	now
counted,	and	the	results	are	grouped	by	CITY	but	ordered	by	the	count	on	each	city	first:
Click	here	to	view	code	image

SELECT	CITY,	COUNT(*)

FROM	EMPLOYEES

GROUP	BY	CITY

ORDER	BY	2	DESC,1;

CITY
––––––––––	–––—
New	York																							27
Columbus																							24
Greenville																					20
San	Diego																						18
Chicago																								17

.

.

.

(1865	row(s)	affected)

Check	out	the	order	of	the	results.	The	results	were	first	sorted	by	the	count	on	each	city	in
descending	order	and	then	sorted	by	city.

Although	GROUP	BY	and	ORDER	BY	perform	a	similar	function,	there	is	one	major
difference.	The	GROUP	BY	clause	is	designed	to	group	identical	data,	whereas	the	ORDER
BY	clause	is	designed	merely	to	put	data	into	a	specific	order.	You	can	use	GROUP	BY
and	ORDER	BY	in	the	same	SELECT	statement,	but	you	must	follow	a	specific	order.

Tip:	You	Can’t	Use	the	ORDER	BY	Clause	in	a	View

You	can	use	the	GROUP	BY	clause	in	the	CREATE	VIEW	statement	to	sort	data,
but	the	ORDER	BY	clause	is	not	allowed	in	the	CREATE	VIEW	statement.	The
CREATE	VIEW	statement	is	discussed	in	depth	in	Hour	20,	“Creating	and	Using
Views	and	Synonyms.”

CUBE	and	ROLLUP	Expressions
Sometimes,	it	is	advantageous	to	get	summary	totals	within	a	certain	group.	For	instance,
you	might	want	to	have	a	breakdown	of	the	SUM	of	sales	per	year,	country,	and	product
type	but	also	want	to	see	the	totals	in	each	year	and	country.	Luckily,	the	ANSI	SQL
standard	provides	for	such	functionality	using	the	CUBE	and	ROLLUP	expressions.

The	ROLLUP	expression	is	used	to	get	subtotals,	or	what	is	commonly	referred	to	as
super-aggregate	rows,	along	with	a	grand	total	row.	The	ANSI	syntax	follows:
Click	here	to	view	code	image

GROUP	BY	ROLLUP(ordered	column	list	of	grouping	sets)

The	way	the	ROLLUP	expression	works	is	that	for	every	change	in	the	LAST	column
provided	for	the	grouping	set,	an	additional	row	is	inserted	into	the	result	set	with	a	NULL
value	for	that	column	and	the	subtotal	of	the	values	in	the	set.	In	addition,	a	row	is	inserted
at	the	end	of	the	result	set	with	NULL	values	for	each	of	the	group	columns	and	a	grand
total	for	the	aggregate	information.	Both	Microsoft	SQL	Server	and	Oracle	follow	the
ANSI-compliant	format.

First,	examine	a	result	set	of	a	simple	GROUP	BY	statement	in	which	you	examine
average	employee	pay	by	CITY	and	ZIP	for	the	city	of	INDIANAPOLIS:
Click	here	to	view	code	image

SELECT	CITY,LASTNAME,	AVG(PAYRATE)	AS	AVG_PAYRATE,	AVG(SALARY)	AS	AVG_SALARY

FROM	EMPLOYEES

WHERE	CITY	LIKE	‘INDIANAPOLIS%’

GROUP	BY	CITY,LASTNAME

ORDER	BY	CITY,LASTNAME;

CITY																											LASTNAME													AVG_PAYRATE										AVG_SALARY

––––––––––	––––––—	––––––—	–––-
Indianapolis	IN																Maddry															19.740000												NULL
Indianapolis	IN																Wahl																	23.150000												NULL
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(2	row(s)	affected)

The	following	is	an	example	of	using	the	ROLLUP	expression	to	get	subtotals	of	pay	rates
and	salaries:
Click	here	to	view	code	image

SELECT	CITY,LASTNAME,	AVG(PAYRATE)	AS	AVG_PAYRATE,	AVG(SALARY)	AS	AVG_SALARY

FROM	EMPLOYEES

WHERE	CITY	LIKE	‘INDIANAPOLIS%’

GROUP	BY	ROLLUP(CITY,LASTNAME);

CITY																							LASTNAME													AVG_PAYRATE														AVG_SALARY
––––––––—	––––––—	––––––––	–––-
Indianapolis
IN												Maddry															19.740000																						NULL
Indianapolis
IN												Wahl																	23.150000																						NULL
Indianapolis
IN												NULL																	21.445000																						NULL
NULL																							NULL																	21.445000																						NULL
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(4	row(s)	affected)

Notice	how	you	now	get	an	average	super-aggregate	row	for	each	one	of	the	cities	and	an
overall	average	for	the	entire	set	as	the	last	row.

The	CUBE	expression	is	different.	It	returns	a	single	row	of	data	with	every	combination
of	the	columns	in	the	column	list	along	with	a	row	for	the	grand	total	of	the	whole	set.	The
syntax	for	the	CUBE	expression	follows:
Click	here	to	view	code	image

GROUP	BY	CUBE(column	list	of	grouping	sets)

CUBE	is	often	used	to	create	crosstab	reports	due	to	its	unique	nature.	For	instance,	if	you
want	to	have	sales	use	the	following	columns	in	the	GROUP	BY	CUBE	expression	list,
CITY,	STATE,	and	REGION,	you	receive	rows	for	each	of	the	following:

CITY
CITY,	STATE
CITY,	REGION
CITY,	STATE,	REGION
REGION
STATE,REGION
STATE
<grand	total	row>

The	following	statement	shows	an	example	of	using	the	CUBE	expression:
Click	here	to	view	code	image

SELECT	CITY,LASTNAME,	AVG(PAYRATE)	AS	AVG_PAYRATE,	AVG(SALARY)	AS	AVG_SALARY

FROM	EMPLOYEES

WHERE	CITY	LIKE	‘INDIANAPOLIS%’

GROUP	BY	CUBE(CITY,LASTNAME);

CITY																							LASTNAME													AVG_PAYRATE														AVG_SALARY
––––––––—	––––––—	––––––––	–––-
Indianapolis	IN												Maddry															19.740000																NULL
NULL																							Maddry															19.740000																NULL
Indianapolis	IN												Wahl																	23.150000																NULL
NULL																							Wahl																	23.150000																NULL
NULL																							NULL																	21.445000																NULL
Indianapolis	IN												NULL																	21.445000																NULL
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(6	row(s)	affected)

Now	you	can	see	that	with	the	CUBE	expression,	there	are	even	more	rows	because	the
statement	needs	to	return	each	combination	of	columns	within	the	column	set	that	we
provided.

The	HAVING	Clause
The	HAVING	clause	when	used	with	the	GROUP	BY	clause	in	a	SELECT	statement	tells
GROUP	BY	which	groups	to	include	in	the	output.	HAVING	is	to	GROUP	BY	as	WHERE	is
to	SELECT.	In	other	words,	the	WHERE	clause	places	conditions	on	the	selected	columns,
and	the	HAVING	clause	places	conditions	on	groups	created	by	the	GROUP	BY	clause.
Therefore,	when	you	use	the	HAVING	clause,	you	are	effectively	including	or	excluding,
as	the	case	might	be,	whole	groups	of	data	from	the	query	results.

The	following	shows	the	position	of	the	HAVING	clause	in	a	query:
SELECT
FROM
WHERE
GROUP	BY
HAVING
ORDER	BY

The	following	is	the	syntax	of	the	SELECT	statement,	including	the	HAVING	clause:
Click	here	to	view	code	image

SELECT	COLUMN1,	COLUMN2
FROM	TABLE1,	TABLE2
WHERE	CONDITIONS
GROUP	BY	COLUMN1,	COLUMN2
HAVING	CONDITIONS
ORDER	BY	COLUMN1,	COLUMN2

In	the	following	example,	you	select	the	average	pay	rate	and	salary	for	all	cities.	You
group	the	output	by	CITY,	but	you	want	to	display	only	those	groups	(cities)	that	have	an
average	salary	equal	to	$71,000.	You	sort	the	results	by	average	salary	for	each	city:
Click	here	to	view	code	image

SELECT	CITY,	AVG(PAYRATE)	AS	AVG_PAYRATE,	AVG(SALARY)	AS	AVG_SALARY

FROM	EMPLOYEES

GROUP	BY	CITY

HAVING	AVG(SALARY)	=71000

ORDER	BY	3;

CITY																											AVG_PAYRATE																				AVG_SALARY
––––––––––	––––––––––	–––––––

Amarillo																							14.070000																						71000.000000
Anaheim																								16.250000																						71000.000000
Butler																									15.730000																						71000.000000
Hidden	Falls																			23.690000																						71000.000000
Hoffman																								NULL																											71000.000000
King	Of	Prussia																22.553333																						71000.000000
Kuparuk																								18.856666																						71000.000000
Linden																									19.003333																						71000.000000
Marquette																						17.350000																						71000.000000
Neosho																									16.565000																						71000.000000
New	Haven																						15.236666																						71000.000000
Rome	NY																								21.140000																						71000.000000
Sheffield																						NULL																											71000.000000
West	Yellowstone															16.893333																						71000.000000
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(14	row(s)	affected)

Summary
You	have	learned	in	this	hour	how	to	group	the	results	of	a	query	using	the	GROUP	BY
clause.	The	GROUP	BY	clause	is	primarily	used	with	aggregate	SQL	functions,	such	as
SUM,	AVG,	MAX,	MIN,	and	COUNT.	The	nature	of	GROUP	BY	is	like	that	of	ORDER	BY
in	that	both	sort	query	results.	The	GROUP	BY	clause	must	sort	data	to	group	results
logically,	but	you	can	also	use	it	exclusively	to	sort	data.	However,	an	ORDER	BY	clause
is	much	simpler	for	this	purpose.

The	HAVING	clause,	an	extension	to	the	GROUP	BY	clause,	places	conditions	on	the
established	groups	of	a	query.	The	WHERE	clause	places	conditions	on	a	query’s	SELECT
clause.	During	the	next	hour,	you	learn	a	new	arsenal	of	functions	that	enable	you	to
further	manipulate	query	results.

Q&A
Q.	Is	using	the	ORDER	BY	clause	mandatory	when	using	the	GROUP	BY	clause	in
a	SELECT	statement?

A.	No,	using	the	ORDER	BY	clause	is	strictly	optional,	but	it	can	be	helpful	when	used
with	GROUP	BY.

Q.	What	is	a	group	value?

A.	Take	the	CITY	column	from	the	EMPLOYEES	table.	If	you	select	the	employee’s
name	and	city	and	then	group	the	output	by	city,	all	the	cities	that	are	identical	are
arranged	together.

Q.	Must	a	column	appear	in	the	SELECT	statement	to	use	a	GROUP	BY	clause	on
it?

A.	Yes,	a	column	must	be	in	the	SELECT	statement	to	use	a	GROUP	BY	clause	on	it.

Q.	Must	all	columns	that	appear	in	the	SELECT	statement	be	used	in	the	GROUP
BY	clause?

A.	Yes,	every	column	that	appears	in	the	SELECT	statement	except	for	aggregate

functions	must	be	used	in	the	GROUP	BY	clause	or	you	will	get	an	error.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	Will	the	following	SQL	statements	work?

a.
Click	here	to	view	code	image

SELECT	SUM(SALARY)	AS	TOTAL_SALARY,	EMPLOYEEID
FROM	EMPLOYEES
GROUP	BY	1	and	2;

b.
Click	here	to	view	code	image

SELECT	EMPLOYEEID,	MAX(SALARY)
FROM	EMPLOYEES
GROUP	BY	SALARY,	EMPLOYEEID;

c.
Click	here	to	view	code	image

SELECT	EMPLOYEEID,	COUNT(SALARY)
FROM	EMPLOYEES
ORDER	BY	EMPLOYEEID
GROUP	BY	SALARY;

d.
Click	here	to	view	code	image

SELECT	YEAR(DATE_HIRE)	AS	YEAR_HIRED,SUM(SALARY)
FROM	EMPLOYEES
GROUP	BY	1
HAVING	SUM(SALARY)>20000;

2.	What	is	the	purpose	of	the	HAVING	clause	and	which	other	clause	is	it	closest	to?

3.	True	or	false:	You	must	also	use	the	GROUP	BY	clause	when	using	the	HAVING
clause.

4.	True	or	false:	The	following	SQL	statement	returns	a	total	of	the	salaries	by	groups:
SELECT	SUM(SALARY)
FROM	EMPLOYEES;

5.	True	or	false:	The	columns	selected	must	appear	in	the	GROUP	BY	clause	in	the
same	order.

6.	True	or	false:	The	HAVING	clause	tells	the	GROUP	BY	clause	which	groups	to
include.

Exercises
1.	Invoke	the	database	and	enter	the	following	query	to	show	all	cities	in
EMPLOYEES:
SELECT	CITY
FROM	EMPLOYEES;

2.	Enter	the	following	query	and	compare	the	results	to	the	query	in	Exercise	1:
SELECT	CITY,	COUNT(*)
FROM	EMPLOYEES
GROUP	BY	CITY;

3.	The	HAVING	clause	works	like	the	WHERE	clause	in	that	it	enables	the	user	to
specify	conditions	on	data	returned.	The	WHERE	clause	is	the	main	filter	on	the
query,	and	the	HAVING	clause	is	the	filter	used	after	groups	of	data	have	been
established	using	the	GROUP	BY	clause.	Enter	the	following	query	to	see	how	the
HAVING	clause	works:

Click	here	to	view	code	image
SELECT	CITY,	COUNT(*)	AS	CITY_COUNT
FROM	EMPLOYEES
GROUP	BY	CITY
HAVING	COUNT(*)	>	15;

4.	Modify	the	query	in	Exercise	3	to	order	the	results	in	descending	order,	from
highest	count	to	lowest.

5.	Write	a	query	to	list	the	average	pay	rate	and	salary	by	position	from	the
EMPLOYEES	table.

6.	Write	a	query	to	list	the	average	salary	by	position	from	the	EMPLOYEES	table
where	the	average	salary	is	greater	than	40000.

7.	Write	the	same	query	you	used	for	Exercise	6,	but	find	the	average	salary	only	for
those	people	making	more	than	40000	grouped	by	city	and	position	and	compare	the
results.	Explain	the	difference.

Hour	11.	Restructuring	the	Appearance	of	Data

What	You’ll	Learn	in	This	Hour:

	Introduction	to	character	functions

	How	and	when	to	use	character	functions

	Examples	of	ANSI	SQL	functions

	Examples	of	common	implementation-specific	functions

	Overview	of	conversion	functions

	How	and	when	to	use	conversion	functions

In	this	hour,	you	learn	how	to	restructure	the	appearance	of	output	results	using	some
American	National	Standards	Institute	(ANSI)	standard	functions,	other	functions	based
on	the	standard,	and	several	variations	used	by	some	major	SQL	implementations.

Note:	The	ANSI	Standard	Is	Not	Rigid

The	ANSI	concepts	discussed	in	this	book	are	just	that—concepts.	Standards
provided	by	ANSI	are	simply	guidelines	for	how	the	use	of	SQL	in	a	relational
database	should	be	implemented.	With	that	thought,	keep	in	mind	that	the	specific
functions	discussed	in	this	hour	are	not	necessarily	the	exact	functions	that	you
might	use	in	your	particular	implementation.	Yes,	the	concepts	are	the	same,	and
the	way	the	functions	work	are	generally	the	same,	but	function	names	and	actual
syntax	might	differ.

ANSI	Character	Functions
Character	functions	are	functions	that	transform	strings	in	SQL	into	formats	different
from	the	way	they	are	stored	in	the	table.	The	first	part	of	this	hour	discusses	the	concepts
for	character	functions	as	covered	by	ANSI.	The	second	part	of	this	hour	shows	real-world
examples	using	functions	that	are	specific	to	various	SQL	implementations.	The	most
common	forms	of	ANSI	character	functions	deal	with	operations	for	concatenation,
substrings,	and	TRANSLATE.

Concatenation	is	the	process	of	combining	two	strings	into	one.	For	example,	you	might
want	to	concatenate	an	individual’s	first	and	last	names	into	a	single	string	for	the
complete	name.	JOHN	concatenated	with	SMITH	produces	JOHN	SMITH.

The	concept	of	substring	is	the	capability	to	extract	part	of	a	string,	or	a	“sub”	of	the
string.	For	example,	the	following	values	are	substrings	of	JOHNSON:

	J

	JOHN

	JO

	ON

	SON

The	TRANSLATE	function	translates	a	string,	character	by	character,	into	another	string.
There	are	normally	three	arguments	with	the	TRANSLATE	function:	the	string	to	be
converted,	a	list	of	the	characters	to	convert,	and	a	list	of	the	substitution	characters.
Implementation	examples	are	shown	in	the	next	part	of	this	hour.

Common	Character	Functions
You	use	character	functions	mainly	to	compare,	join,	search,	and	extract	a	segment	of	a
string	or	a	value	in	a	column.	Several	character	functions	are	available	to	the	SQL
programmer.

The	following	sections	illustrate	the	application	of	ANSI	concepts	in	some	of	the	leading
implementations	of	SQL,	such	as	Microsoft	SQL	Server,	MySQL,	and	Oracle.

The	CONCAT	Function
The	CONCAT	function,	along	with	most	other	functions,	is	represented	slightly	differently
among	various	implementations.	The	following	examples	show	the	use	of	concatenation
in	Oracle	and	SQL	Server.

Say	you	want	to	concatenate	JOHN	and	SON	to	produce	JOHNSON.	In	Oracle,	your	code
looks	like	this:

SELECT	‘JOHN’	|	|	‘SON’

In	SQL	Server,	your	code	appears	as	follows:
SELECT	‘JOHN’	+	‘SON’

In	SQL	Server	or	Oracle,	your	code	using	the	CONCAT	looks	like	this:
Click	here	to	view	code	image

SELECT	CONCAT(‘JOHN’	,	‘SON’)

Now	for	an	overview	of	the	syntaxes.	The	syntax	for	Oracle	is
Click	here	to	view	code	image

COLUMN_NAME	|	|	[”	|	|]	COLUMN_NAME	[COLUMN_NAME]

The	syntax	for	SQL	Server	is
Click	here	to	view	code	image

COLUMN_NAME	+	[”	+]	COLUMN_NAME	[COLUMN_NAME]

The	syntax	for	the	CONCAT	function	is
Click	here	to	view	code	image

CONCAT(COLUMN_NAME	,	[”	,]	COLUMN_NAME	[COLUMN_NAME])

Both	SQL	Server	as	well	as	Oracle	employ	the	CONCAT	function.	You	can	use	it	to	get	the
concatenation	of	pairs	of	strings	just	like	the	shortened	syntax	of	+	for	SQL	Server	and	the
double	pipe	(|	|)	for	Oracle.	The	main	difference	between	the	two	versions	is	that	the

Oracle	version	is	limited	to	two	values	to	be	concatenated,	whereas	you	can	use	the
MySQL	version	for	many	values.	In	addition,	remember	that	because	this	operation	is	for
string	values,	any	numeric	values	must	be	converted	to	strings	before	concatenation.	Some
examples	of	utilizing	concatenation	in	its	various	formats	are	shown	next.

This	SQL	Server	statement	concatenates	the	values	for	city	and	state	into	one	value:
Click	here	to	view	code	image

SELECT	CITY	+	STATE	FROM	EMPLOYEES;

This	Oracle	statement	concatenates	the	values	for	city	and	state	into	one	value,	placing	a
comma	between	the	values	for	city	and	state:
Click	here	to	view	code	image

SELECT	CITY	|	|’,	‘|	|	STATE	FROM	EMPLOYEES;

Alternatively	for	Oracle,	if	you	want	to	use	the	CONCAT	statement	to	achieve	the
preceding	result,	you	cannot	do	so	because	you	are	concatenating	more	than	two	values.

Note:	Use	of	Quotation	Marks	for	Special	Characters

Notice	the	use	of	single	quotation	marks	and	a	comma	in	the	preceding	SQL
statement.	Most	characters	and	symbols	are	allowed	if	they’re	enclosed	by	single
quotations	marks.	Some	implementations	might	use	double	quotation	marks	for
literal	string	values.

This	SQL	Server	statement	concatenates	the	values	for	city	and	state	into	one	value,
placing	a	space	between	the	two	original	values:
Click	here	to	view	code	image

SELECT	CITY	+	”	+	STATE	FROM	EMPLOYEES;

This	SQL	Server	statement	concatenates	the	last	name	with	the	first	name	and	inserts	a
comma	between	the	two	original	values:
Click	here	to	view	code	image

SELECT	LASTNAME	+	‘,	‘	+	FIRSTNAME	NAME

FROM	EMPLOYEES

ORDER	BY	LASTNAME;

NAME
––––––––––
Aarant,	Sidney
Abbas,	Gail
Abbay,	Demetrice
Abbington,	Gaynelle
Abbington,	Gaynelle
Abdelal,	Marcelo
Abdelal,	Marcelo
Abdelwahed,	Scarlet
.
.
.
.

(5611	row(s)	affected)

The	UPPER	Function
Most	implementations	have	a	way	to	control	the	case	of	data	by	using	functions.	The
UPPER	function	converts	lowercase	letters	to	uppercase	letters	for	a	specific	string.

The	syntax	is	as	follows:
UPPER(character	string)

This	SQL	statement	converts	all	characters	in	the	column	to	uppercase:
Click	here	to	view	code	image

SELECT	DISTINCT	UPPER(CITY)	AS	CITY

FROM	EMPLOYEES

WHERE	STATE=‘IN’

AND	(CITY	LIKE	‘A%’

OR	CITY	LIKE	‘B%’

OR	CITY	LIKE	‘C%’

);

CITY
––––––––––
ANDERSON
ANDREWS
ANGOLA
BATESVILLE
BEDFORD
BLOOMINGTON
COATESVILLE
CONNERSVILLE
CRANE

(9	row(s)	affected)

Microsoft	SQL	Server,	MySQL,	and	Oracle	all	support	this	syntax.	In	addition,	MySQL
supports	an	alternative	to	the	UPPER	function	called	UCASE.	Because	both	functions
accomplish	the	same	task,	you	are	better	served	to	follow	the	ANSI	syntax.

The	LOWER	Function
The	converse	of	the	UPPER	function,	the	LOWER	function,	converts	uppercase	letters	to
lowercase	letters	for	a	specific	string.

The	syntax	follows:
LOWER(character	string)

This	SQL	statement	converts	all	characters	in	the	column	to	lowercase:
Click	here	to	view	code	image

SELECT	DISTINCT	LOWER(CITY)	AS	CITY

FROM	EMPLOYEES

WHERE	STATE=‘IN’

AND	(CITY	LIKE	‘A%’

OR	CITY	LIKE	‘B%’

OR	CITY	LIKE	‘C%’

);

CITY
––––––––––

anderson
andrews
angola
batesville
bedford
bloomington
coatesville
connersville
crane

(9	row(s)	affected)

The	LOWER	function	is	supported	in	Microsoft	SQL	Server,	Oracle,	and	MySQL.	Like	the
UPPER	function,	MySQL	supports	an	alternative,	LCASE,	but	as	discussed	with	the
UPPER	function,	it	is	often	better	to	follow	the	ANSI	standard.

The	SUBSTR	Function
Taking	an	expression’s	substring	is	common	in	most	implementations	of	SQL,	but	the
function	name	might	differ,	as	shown	in	the	following	Oracle	and	SQL	Server	examples.

The	syntax	for	Oracle	is
Click	here	to	view	code	image

SUBSTR(COLUMN	NAME,	STARTING	POSITION,	LENGTH)

The	syntax	for	SQL	Server	is
Click	here	to	view	code	image

SUBSTRING(COLUMN	NAME,	STARTING	POSITION,	LENGTH)

The	only	difference	between	the	two	implementations	is	the	spelling	of	the	function	name.

This	SQL	statement	returns	the	first	three	characters	of	LASTNAME:
Click	here	to	view	code	image

SELECT	SUBSTRING(LASTNAME,1,3)	FROM	EMPLOYEES

This	SQL	statement	returns	the	fourth	and	fifth	characters	of	LASTNAME:
Click	here	to	view	code	image

SELECT	SUBSTRING(LASTNAME,4,2)	FROM	EMPLOYEES

This	SQL	statement	returns	the	sixth	through	the	ninth	characters	of	LASTNAME:
Click	here	to	view	code	image

SELECT	SUBSTRING(LASTNAME,6,4)	FROM	EMPLOYEES

The	following	is	an	example	that	is	compatible	with	Microsoft	SQL	Server	and	MySQL:
Click	here	to	view	code	image

SELECT	TOP	10	EMPLOYEEID,	SUBSTRING(UPPER(LASTNAME),1,3)

FROM	EMPLOYEES;

EMPLOYEEID
–––—	–-
1											INE
2											DEN
3											SAB
4											LOO

5											SAC
6											ARC
7											AST
8											CON
9											CAP
10										ELL

(10	row(s)	affected)

The	following	SQL	statement	is	what	you	use	for	Oracle:
Click	here	to	view	code	image

SELECT	EMPLOYEEID,	SUBSTR(UPPER(LASTNAME),1,3)

FROM	EMPLOYEES

WHERE	ROWNUM<=10;

EMPLOYEEID
–––—	–-
1											INE
2											DEN
3											SAB
4											LOO
5											SAC
6											ARC
7											AST
8											CON
9											CAP
10										ELL

10	rows	selected.

Note:	Output	Statements	Differ	Between	Implementations

Notice	the	difference	in	the	feedback	of	the	two	queries.	The	first	example	returns
the	feedback	10	row(s)	affected,	and	the	second	returns	10	rows
selected.	You	will	see	differences	such	as	this	between	the	various
implementations.

The	TRANSLATE	Function
The	TRANSLATE	function	searches	a	string	of	characters	and	checks	for	a	specific
character,	makes	note	of	the	position	found,	searches	the	replacement	string	at	the	same
position,	and	then	replaces	that	character	with	the	new	value.	The	syntax	is
Click	here	to	view	code	image

TRANSLATE(CHARACTER	SET,	VALUE1,	VALUE2)

The	next	SQL	statement	substitutes	every	occurrence	of	I	in	the	string	with	A,	every
occurrence	of	N	with	B,	and	all	occurrences	of	D	with	C:
Click	here	to	view	code	image

SELECT	TRANSLATE	(CITY,‘IND’,‘ABC’	FROM	EMPLOYEES)	CITY_TRANSLATION

The	following	example	illustrates	the	use	of	TRANSLATE	with	real	data:
Click	here	to	view	code	image

SELECT	DISTINCT	UPPER(CITY)	CITY,	TRANSLATE(UPPER(CITY),‘ACE’,‘XYZ’)

CITY_TRANSLATION

FROM	EMPLOYEES

WHERE	CITY	LIKE	(‘C%’);

CITY											CITY_TRANSLATION
–––-					–––––—
COATESVILLE				YOXTZSVILLZ
CONNERSVILLE			YONNZRSVILLZ
CRANE										YRXNZ

3	rows	selected.

Notice	in	this	example	that	all	occurrences	of	A	were	replaced	with	X,	C	with	Y,	and	E
with	Z.

Both	MySQL	and	Oracle	support	the	use	of	the	TRANSLATE	function.	Microsoft	SQL
Server	does	not	currently	support	the	use	of	TRANSLATE.

The	REPLACE	Function
The	REPLACE	function	replaces	every	occurrence	of	a	character	or	string	with	another
specified	character	or	string.	The	use	of	this	function	is	similar	to	the	TRANSLATE
function	except	only	one	specific	character	or	string	is	replaced	within	another	string.	The
syntax	is
Click	here	to	view	code	image

REPLACE(‘VALUE’,	‘VALUE’,	[NULL]	‘VALUE’)

This	statement	returns	all	the	first	names	and	changes	any	occurrence	of	T	to	B:
Click	here	to	view	code	image

SELECT	REPLACE(FIRSTNAME,‘T’,	‘B’)	FROM	EMPLOYEES

This	statement	returns	all	the	cities	in	EMPLOYEES	and	returns	the	same	cities	with	each
I	replaced	with	a	Z:
Click	here	to	view	code	image

SELECT	TOP	10	CITY,	REPLACE(CITY,‘I’,‘Z’)	AS	REPLACE_CITY

FROM	EMPLOYEES

WHERE	CITY	LIKE	‘%I%’;

CITY																											REPLACE_CITY
––––––––––	––––––––––
Alexandria																					AlexandrZa
Eunice																									EunZce
Eunice																									EunZce
Eunice																									EunZce
Evansville	IN																		EvansvZlle	ZN
Evansville	IN																		EvansvZlle	ZN
Evansville	IN																		EvansvZlle	ZN
Union	City																					UnZon	CZty
Union	City																					UnZon	CZty
Union	City																					UnZon	CZty

(10	row(s)	affected)

Microsoft	SQL	Server,	MySQL,	and	Oracle	all	support	the	ANSI	version	of	the	syntax.

The	LTRIM	Function
The	LTRIM	function	is	another	way	of	clipping	part	of	a	string.	This	function	and
SUBSTRING	are	in	the	same	family.	LTRIM	trims	characters	from	the	left	of	a	string.	The
syntax	is
Click	here	to	view	code	image

LTRIM(CHARACTER	STRING	[,‘set’])

In	SQL	Server,	however,	you	do	not	provide	the	set	of	characters	to	trim.	Instead	the
LTRIM	function	works	to	trim	spaces	only	from	the	left	of	a	string.	So	the	SQL	Server
syntax	is

LTRIM(CHARACTER	STRING)

This	SQL	statement	trims	the	characters	KIM	from	the	left	of	all	names	that	begin	with
KIM:
Click	here	to	view	code	image

SELECT	LTRIM(UPPER(FIRSTNAME),‘KIM’)	FROM	CUSTOMERS	WHERE	UPPER(FIRSTNAME)
LIKE	‘KIM%’;

This	SQL	statement	returns	the	first	name	of	the	employees	with	the	prefix	of	KIM
trimmed	from	the	left	side	of	the	character	string	in	Oracle:
Click	here	to	view	code	image

SELECT	FIRSTNAME,	LTRIM(UPPER(FIRSTNAME),‘KIM’)	TRIMMED

FROM	EMPLOYEES

WHERE	ROWNUM<=10;

FIRSTNAME																						TRIMMED
––––––––––	––––––––––
Kimberly																							BERLY
Kimbra																									BRA
Kimiko																									IKO
Kimberli																							BERLI
Kimberlie																						BERLIE
Kimberlee																						BERLEE
Kimberlie																						BERLIE
Kimbery																								BERY
Kim
Kimiko																									IKO

10	rows	selected.

The	same	query	run	in	SQL	Server	would	trim	only	the	blank	characters	from	the	left	side
of	the	strings:
Click	here	to	view	code	image

SELECT	TOP	10	FIRSTNAME,	LTRIM(UPPER(FIRSTNAME))	TRIMMED

FROM	EMPLOYEES;

FIRSTNAME																						TRIMMED
––––––––––	––––––––––
Kimberly																							KIMBERLY
Kimbra																									KIMBRA
Kimiko																									KIMIKO
Kimberli																							KIMBERLI
Kimberlie																						KIMBERLIE

Kimberlee																						KIMBERLEE
Kimberlie																						KIMBERLIE
Kimbery																								KIMBERY
Kim																												KIM
Kimiko																									KIMIKO

(10	row(s)	affected)

The	LTRIM	function	is	supported	in	Microsoft	SQL	Server,	MySQL,	and	Oracle.

The	RTRIM	Function
Like	LTRIM,	the	RTRIM	function	trims	characters,	but	this	time	from	the	right	of	a	string.
The	syntax	is
Click	here	to	view	code	image

RTRIM(CHARACTER	STRING	[,‘set’])

Remember	that	the	SQL	Server	version	removes	only	the	blank	spaces	from	the	right	side
of	the	string	and	therefore	doesn’t	require	the	[,'set']	portion	of	the	syntax.

RTRIM(CHARACTER	STRING)

This	SQL	statement	for	Oracle	returns	the	first	name	STEPHEN	and	trims	the	HEN,
leaving	STEP	as	a	result:
Click	here	to	view	code	image

SELECT	FIRSTNAME,LASTNAME,RTRIM(UPPER(FIRSTNAME),	‘HEN’)	TRIMMED

FROM	EMPLOYEES

WHERE	UPPER(FIRSTNAME)	=	‘STEPHEN’;

FIRSTNAME																						LASTNAME																							TRIMMED
––––––––––	––––––––––	–––––––
–––
Stephen																								Carrick																								STEP
Stephen																								Basurto																								STEP

2	rows	selected.

The	string	HEN	was	trimmed	from	the	right	of	all	applicable	strings.

The	RTRIM	function	is	supported	in	Microsoft	SQL	Server,	MySQL,	and	Oracle.

Miscellaneous	Character	Functions
The	following	sections	show	a	few	other	character	functions	worth	mentioning.	Again,
these	are	functions	that	are	fairly	common	among	major	implementations.

The	LENGTH	Function
The	LENGTH	function	is	a	common	one	that	finds	the	length	of	a	string,	number,	date,	or
expression	in	bytes.	The	syntax	is

LENGTH(CHARACTER	STRING)

This	SQL	statement	run	in	Oracle	returns	the	product	description	and	its	corresponding
length:

Click	here	to	view	code	image

SELECT	AIRCRAFTTYPE,	LENGTH(AIRCRAFTTYPE)

FROM	AIRCRAFT

WHERE	ROWNUM<=10;

AIRCRAFTTYPE																			NAMELENGTH
––––––––––	–––—
British	Aerospace	BAe146-100			28
Airbus	A310																				11
Airbus	A310-300																15
Airbus	330	(200	&	300)	series		29
Airbus	340-300																	14
Boeing	727																					10
Boeing	737-300																	14
Boeing	737-400																	14
Boeing	737-500																	14
Boeing	737																					10

10	rows	selected.

The	LENGTH	function	is	supported	in	both	MySQL	and	Oracle.	Microsoft	SQL	Server
uses	a	shortened	version	LEN	instead,	but	the	functionality	is	the	same.

The	ISNULL	Function	(NULL	Value	Checker)
The	ISNULL	function	returns	data	from	one	expression	if	another	expression	is	NULL.
You	can	use	ISNULL	with	most	data	types;	however,	the	value	and	the	substitute	must	be
the	same	data	type.	The	syntax	is
Click	here	to	view	code	image

ISNULL(‘VALUE’,	‘SUBSTITUTION’)

This	SQL	statement	finds	NULL	values	and	substitutes	ZZ	for	them:
Click	here	to	view	code	image

SELECT	TOP	10	CITY,	IFNULL(STATE,‘ZZ’)	STATE

FROM	EMPLOYEES;

CITY																											STATE
––––––––––	–––-
Red	Dog																								ZZ
Falls	Bay																						ZZ
False	Island																			ZZ
False	Island																			ZZ
Sandy	River																				ZZ
Sandy	River																				ZZ
Sandy	River																				ZZ
Sandy	River																				ZZ
Fin	Creek																						ZZ
Fin	Creek																						ZZ

(10	row(s)	affected)

Only	NULL	values	are	now	represented	as	ZZ.

ISNULL	is	supported	only	in	the	SQL	Server	implementation.	Oracle	utilizes	the
COALESCE	function,	which	is	discussed	next.

The	COALESCE	Function
The	COALESCE	function	is	similar	to	the	ISNULL	function	in	that	it	specifically	replaces
NULL	values	within	the	result	set.	The	COALESCE	function,	however,	can	accept	a	whole
set	of	values	and	checks	each	one	in	order	until	it	finds	a	non-NULL	result.	If	a	non-NULL
result	is	not	present,	COALESCE	returns	a	NULL	value.

The	following	example	demonstrates	the	COALESCE	function	by	giving	us	the	first	non-
NULL	value	of	STATE	or	the	string	value	of	ZZ:
Click	here	to	view	code	image

SELECT	TOP	10	CITY,	COALESCE(STATE,‘ZZ’)	STATE

FROM	EMPLOYEES;

CITY																											STATE
––––––––––	–––-
Red	Dog																								ZZ
Falls	Bay																						ZZ
False	Island																			ZZ
False	Island																			ZZ
Sandy	River																				ZZ
Sandy	River																				ZZ
Sandy	River																				ZZ
Sandy	River																				ZZ
Fin	Creek																						ZZ
Fin	Creek																						ZZ

(10	row(s)	affected)

The	COALESCE	function	is	supported	in	Microsoft	SQL	Server,	Oracle,	and	MySQL.

The	LPAD	Function
LPAD	(left	pad)	is	used	to	add	characters	or	spaces	to	the	left	of	a	string.	The	syntax	is

LPAD(CHARACTER	SET)

The	following	example	pads	periods	to	the	left	of	each	product	description,	totaling	30
characters	between	the	actual	value	and	padded	periods:
Click	here	to	view	code	image

SELECT	DISTINCT	LPAD(UPPER(CITY),20,’.’)	CITY

FROM	EMPLOYEES	WHERE	STATE=‘RI’;

CITY
––––––––––
……..BLOCK	ISLAND
……..PAWTUCKET	RI
……….PROVIDENCE
…………WESTERLY

4	rows	selected.

The	LPAD	function	is	supported	in	both	MySQL	and	Oracle.	Unfortunately,	no	alternative
is	available	for	Microsoft	SQL	Server.

The	RPAD	Function
The	RPAD	(right	pad)	function	adds	characters	or	spaces	to	the	right	of	a	string.	The
syntax	is

RPAD(CHARACTER	SET)

The	following	example	pads	periods	to	the	right	of	each	product	description,	totaling	30
characters	between	the	actual	value	and	padded	periods:
Click	here	to	view	code	image

SELECT	DISTINCT	RPAD(UPPER(CITY),20,’.’)	CITY

FROM	EMPLOYEES	WHERE	STATE=‘RI’;

CITY
––––––––––
BLOCK	ISLAND……..
PAWTUCKET	RI……..
PROVIDENCE……….
WESTERLY…………

4	rows	selected.

The	RPAD	function	is	available	in	both	MySQL	and	Oracle.	Unfortunately,	no	substitute	is
available	for	Microsoft	SQL	Server.

The	ASCII	Function
The	ASCII	function	returns	the	ASCII	representation	of	the	leftmost	character	of	a	string.
The	syntax	is

ASCII(CHARACTER	SET)

Following	are	some	examples:

	ASCII('A')	returns	65

	ASCII('B')	returns	66

	ASCII('C')	returns	67

	ASCII('a')	returns	97

For	more	information,	you	may	refer	to	the	ASCII	chart	located	at	www.asciitable.com.

The	ASCII	function	is	supported	in	Microsoft	SQL	Server,	MySQL,	and	Oracle.

Mathematical	Functions
Mathematical	functions	are	standard	across	implementations.	Mathematical	functions
enable	you	to	manipulate	numeric	values	in	a	database	according	to	mathematical	rules.

The	most	common	functions	include	the	following:

	Absolute	value	(ABS)

	Rounding	(ROUND)

	Square	root	(SQRT)

http://www.asciitable.com

	Sign	values	(SIGN)

	Power	(POWER)

	Ceiling	and	floor	values	(CEIL(ING),	FLOOR)

	Exponential	values	(EXP)

	SIN,	COS,	TAN

The	general	syntax	of	most	mathematical	functions	is
FUNCTION(EXPRESSION)

All	the	mathematical	functions	are	supported	in	Microsoft	SQL	Server,	MySQL,	and
Oracle.

Conversion	Functions
Conversion	functions	convert	a	data	type	into	another	data	type.	For	example,	perhaps	you
have	data	that	is	normally	stored	in	character	format,	but	occasionally	you	want	to	convert
the	character	format	to	numeric	to	make	calculations.	Mathematical	functions	and
computations	are	not	allowed	on	data	that	is	represented	in	character	format.

The	following	are	general	types	of	data	conversions:

	Character	to	numeric

	Numeric	to	character

	Character	to	date

	Date	to	character

The	first	two	types	of	conversions	are	discussed	in	this	hour.	The	remaining	conversion
types	are	discussed	in	Hour	12,	“Understanding	Dates	and	Times.”

Converting	Character	Strings	to	Numbers
You	should	notice	two	things	regarding	the	differences	between	numeric	data	types	and
character	string	data	types:

	You	can	use	arithmetic	expressions	and	functions	on	numeric	values.

	Numeric	values	are	right-justified	in	the	output	results,	whereas	character	string	data
types	are	left-justified.

Note:	Converting	to	Numeric	Values

For	a	character	string	to	be	converted	to	a	number,	the	characters	must	typically	be
0	through	9.	The	addition	symbol	(+),	minus	symbol	(–),	and	period	(.)	can	also	be
used	to	represent	positive	numbers,	negative	numbers,	and	decimals.	For	example,
the	string	STEVE	cannot	be	converted	to	a	number,	whereas	an	individual’s	Social
Security	number	can	be	stored	as	a	character	string	but	can	easily	be	converted	to	a
numeric	value	via	use	of	a	conversion	function.

When	a	character	string	is	converted	to	a	numeric	value,	the	value	takes	on	the	two
attributes	just	mentioned.

Some	implementations	might	not	have	functions	to	convert	character	strings	to	numbers,
whereas	others	have	such	conversion	functions.	In	either	case,	consult	your
implementation	documentation	for	specific	syntax	and	rules	for	conversions.

Note:	Some	Systems	Do	the	Conversions	for	You

Some	implementations	might	implicitly	convert	data	types	when	necessary.	This
means	that	the	system	makes	the	conversion	for	you	when	changing	between	data
types.	In	these	cases,	the	use	of	conversion	functions	is	unnecessary.	Check	your
implementation’s	documentation	to	see	which	types	of	implicit	conversions	are
supported.

The	following	is	an	example	of	a	numeric	conversion	using	an	Oracle	conversion
function:
Click	here	to	view	code	image

SELECT	EMPLOYEEID,	TO_CHAR(EMPLOYEEID)	AS	CONVERTEDNUM

FROM	EMPLOYEES

WHERE	EMPLOYEEID<=10;

EMPLOYEEID		CONVERTEDNUM
–––—	––––
1											1
2											2
3											3
4											4
5											5
6											6
7											7
8											8
9											9
10										10

10	rows	selected.

The	employee	identification	is	right-justified	following	the	conversion.

Converting	Numbers	to	Character	Strings
Converting	numeric	values	to	character	strings	is	precisely	the	opposite	of	converting
characters	to	numbers.

The	following	is	an	example	of	converting	a	numeric	value	to	a	character	string	using	two
different	Transact-SQL	conversion	functions	for	Microsoft	SQL	Server:
Click	here	to	view	code	image

SELECT	TOP	10	PAY	=	PAYRATE,	NEW_PAY	=	STR(PAYRATE),	NEWER_PAY	=	CAST(PAYRATE

AS	VARCHAR(10))

FROM	EMPLOYEES

WHERE	PAYRATE	IS	NOT	NULL;

PAY																												NEW_PAY				NEWER_PAY
––––––––––	–––-	–––-

22.24																										22									22.24
15.29																										15									215.29
12.88																										13									212.88
23.61																										24									223.61
24.79																										25									224.79
18.03																										18									218.03
15.64																										16									215.64
23.09																										23									223.09
21.25																										21									221.25
14.94																										15									214.94

(10	row(s)	affected)

Tip:	Different	Data	Is	Output	in	Different	Ways

The	data’s	justification	is	the	simplest	way	to	identify	a	column’s	data	type.
Character	data	is	most	often	left-justified	whereas	numeric	data	is	often	right-
justified.	This	enables	you	to	determine	what	kind	of	data	is	returned	from	a	given
query	quickly.

The	following	is	the	same	example	using	an	Oracle	conversion	function:
Click	here	to	view	code	image

SELECT	PAYRATE,	TO_CHAR(PAYRATE)

FROM	EMPLOYEES

WHERE	PAY_RATE	IS	NOT	NULL

AND	ROWNUM<=10;

		PAYRATE													TO_CHAR(PAYRATE)
–––-												–––––—
22.24																	22.24
15.29																	15.29
12.88																	12.88
23.61																	23.61
24.79																	24.79
18.03																	18.03
15.64																	15.64
23.09																	23.09
21.25																	21.25
14.94																	14.94

10	rows	selected.

Combining	Character	Functions
You	can	combine	most	functions	in	a	SQL	statement.	SQL	would	be	far	too	limited	if
function	combinations	were	not	allowed.	The	following	example	combines	two	functions
in	the	query:	concatenation	with	substring.	By	expanding	the	EMPLOYEEID	to	9
characters	and	then	pulling	the	column	apart	into	three	pieces,	you	can	concatenate	those
pieces	with	dashes	to	render	a	readable	Social	Security	number.	This	example	uses	the
CONCAT	function	to	combine	the	strings	for	output:
Click	here	to	view	code	image

SELECT	CONCAT(LASTNAME,’,	‘,FIRSTNAME)	NAME,

							CONCAT(SUBSTRING(CAST(100000000	+	EMPLOYEEID	AS	VARCHAR(9)),1,3),’-‘,
							SUBSTRING(CAST(100000000	+	EMPLOYEEID	AS	VARCHAR(9)),4,2),’-‘,
							SUBSTRING(CAST(100000000	+	EMPLOYEEID	AS	VARCHAR(9)),6,4))	AS	ID

FROM	EMPLOYEES

WHERE	EMPLOYEEID	BETWEEN	4000	AND	4009;

NAME																											ID
––––––––––	–––—
Waltermire,	Jessie													100-00-4000
Calcao,	Kitty																		100-00-4001
Aracena,	Fabian																100-00-4002
Neason,	Hana																			100-00-4003
Vanner,	Tonie																		100-00-4004
Usina,	Annabell																100-00-4005
Tegenkamp,	Thanh															100-00-4006
Stage,	Laure																			100-00-4007
Allam,	Irma																				100-00-4008
Saulters,	Ruby																	100-00-4009

(10	row(s)	affected)

The	following	example	uses	the	LEN	function	and	the	addition	arithmetic	operator	(+)	to
add	the	length	of	the	first	name	to	the	length	of	the	last	name	for	each	column;	the	SUM
function	then	finds	the	total	length	of	all	first	and	last	names:
Click	here	to	view	code	image

SELECT	SUM(LEN(LASTNAME)	+	LEN(FIRSTNAME))	TOTAL

FROM	EMPLOYEES;

TOTAL
–––—
71571

(1	row(s)	affected)

Note:	How	Embedded	Functions	Are	Resolved

When	embedding	functions	within	functions	in	a	SQL	statement,	remember	that	the
innermost	function	is	resolved	first,	and	then	each	function	is	subsequently	resolved
from	the	inside	out.

Summary
This	hour	introduced	you	to	various	functions	used	in	a	SQL	statement—usually	a	query
—to	modify	or	enhance	the	way	output	is	represented.	Those	functions	include	character,
mathematical,	and	conversion	functions.	It	is	important	to	realize	that	the	ANSI	standard
is	a	guideline	for	how	SQL	should	be	implemented	by	vendors,	but	it	does	not	dictate	the
exact	syntax	or	necessarily	place	limits	on	vendors’	innovations.	Most	vendors	have
standard	functions	and	conform	to	the	ANSI	concepts,	but	each	vendor	has	its	own
specific	list	of	available	functions.	The	function	name	might	differ	and	the	syntax	might
differ,	but	the	concepts	with	all	functions	are	the	same.

Q&A
Q.	Are	all	functions	in	the	ANSI	standard?

A.	No,	not	all	functions	are	exactly	ANSI	SQL.	Functions,	like	data	types,	are	often
implementation-dependent.	Most	implementations	contain	supersets	of	the	ANSI

functions;	many	have	a	wide	range	of	functions	with	extended	capability,	whereas
other	implementations	seem	to	be	somewhat	limited.	Several	examples	of	functions
from	selected	implementations	are	included	in	this	hour.	However,	because	so	many
implementations	use	similar	functions	(although	they	might	slightly	differ),	check
your	particular	implementation	for	available	functions	and	their	usage.

Q.	Is	the	data	actually	changed	in	the	database	when	using	functions?

A.	No,	data	is	not	changed	in	the	database	when	using	functions.	Functions	are	typically
used	in	queries	to	manipulate	the	output’s	appearance.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	Match	the	descriptions	with	the	possible	functions:

2.	True	or	false:	Using	functions	in	a	SELECT	statement	to	restructure	the	appearance
of	data	in	output	also	affects	the	way	the	data	is	stored	in	the	database.

3.	True	or	false:	The	outermost	function	is	always	resolved	first	when	functions	are
embedded	within	other	functions	in	a	query.

Exercises
1.	Type	the	following	code	to	concatenate	each	employee’s	last	name	and	first	name	in
SQL	Server:

Click	here	to	view	code	image
SELECT	CONCAT(LASTNAME,	‘,	‘,	FIRSTNAME)	AS	FULLNAME
FROM	EMPLOYEES;

How	would	the	same	statement	be	applied	in	Oracle?

2.	Type	the	following	MySQL	code	to	print	each	employee’s	concatenated	name	and
his	or	her	area	code:

Click	here	to	view	code	image
SELECT	CONCAT(LASTNAME,	‘,	‘,	FIRSTNAME)	AS	FULLNAME,	SUBSTRING(LASTNAME,
1,
3)	AS	SUBNAME
FROM	EMPLOYEES;

Try	writing	the	same	code	in	Oracle.

3.	Write	a	SQL	statement	that	lists	employee	email	addresses.	Email	is	not	a	stored
column.	The	email	address	for	each	employee	should	be	as	follows:
FIRST.LAST@PERPTECH.COM

For	example,	John	Smith’s	email	address	is	JOHN.SMITH@PERPTECH.COM.

4.	Write	a	SQL	statement	that	lists	each	employee’s	name,	employee	ID,	and	phone
number	in	the	following	formats:

a.	The	name	should	be	displayed	as	SMITH,	JOHN.

b.	The	employee	ID	should	be	displayed	as	the	first	three	letters	of	their	last	name
in	uppercase,	a	dash,	and	then	the	employee	number.	Example:	SMI-4203

c.	The	phone	number	should	be	displayed	as	(999)999-9999.

Hour	12.	Understanding	Dates	and	Times

What	You’ll	Learn	in	This	Hour:

	How	the	date	and	time	are	stored

	Typical	date	and	time	formats

	How	to	use	date	functions

	How	to	use	date	conversions

In	this	hour,	you	learn	about	the	nature	of	dates	and	times	in	SQL.	Not	only	does	this	hour
discuss	the	DATETIME	data	type	in	more	detail,	but	you	also	see	how	some
implementations	use	dates,	how	to	extract	the	date	and	time	in	a	wanted	format,	and	some
of	the	common	rules.

Note:	Variations	in	the	SQL	Syntax

As	you	know	by	now,	there	are	many	different	SQL	implementations.	This	book
shows	the	American	National	Standards	Institute	(ANSI)	standard	and	the	most
common	nonstandard	functions,	commands,	and	operators.	MySQL	is	used	for	the
examples.	Even	in	MySQL,	the	date	can	be	stored	in	different	formats.	You	must
check	your	particular	implementation	for	the	date	storage.	No	matter	how	it	is
stored,	your	implementation	should	have	functions	that	convert	date	formats.

How	Is	a	Date	Stored?
Each	implementation	has	a	default	storage	format	for	the	date	and	time.	This	default
storage	often	varies	among	different	implementations,	as	do	other	data	types	for	each
implementation.	The	following	sections	begin	by	reviewing	the	standard	format	of	the
DATETIME	data	type	and	its	elements.	Then	you	see	the	data	types	for	date	and	time	in
some	popular	implementations	of	SQL,	including	Oracle,	MySQL,	and	Microsoft	SQL
Server.

Standard	Data	Types	for	the	Date	and	Time
There	are	three	standard	SQL	data	types	for	date	and	time	(DATETIME)	storage:

	DATE—	Stores	date	literals.	DATE	is	formatted	as	YYYY-MM-DD	and	ranges	from
0001-01-01	to	9999-12-31.

	TIME—	Stores	time	literals.	TIME	is	formatted	as	HH:MI:SS.nn…	and	ranges
from	00:00:00…	to	23:59:61.999….

	TIMESTAMP—	Stores	date	and	time	literals.	TIMESTAMP	is	formatted	as	YYYY-
MM-DD	HH:MI:SS.nn…	and	ranges	from	0001-01-01	00:00:00…	to
9999-12-31	23:59:61.999….

DATETIME	Elements
DATETIME	elements	are	those	elements	pertaining	to	the	date	and	time	that	are	included
as	part	of	a	DATETIME	definition.	The	following	is	a	list	of	the	constrained	DATETIME
elements	and	a	valid	range	of	values	for	each	element:

Each	of	these	is	an	element	of	time	that	you	deal	with	on	a	daily	basis.	Seconds	can	be
represented	as	a	decimal,	allowing	the	expression	of	tenths	of	a	second,	hundredths	of	a
second,	milliseconds,	and	so	on.	You	might	question	that	a	minute	can	contain	more	than
60	seconds.	According	to	the	ANSI	standard,	this	61.999	seconds	is	due	to	the	possible
insertion	or	omission	of	a	leap	second	in	a	minute,	which	is	a	rare	occurrence.	Refer	to
your	implementation	on	the	allowed	values	because	date	and	time	storage	might	vary
widely.

Tip:	Databases	Handle	Leap	Years

Date	variances	such	as	leap	seconds	and	leap	years	are	handled	internally	by	the
database	if	the	data	is	stored	in	a	DATETIME	data	type.

Implementation-Specific	Data	Types
As	with	other	data	types,	each	implementation	provides	its	own	representation	and	syntax.
Table	12.1	shows	how	three	products	(Microsoft	SQL	Server,	MySQL,	and	Oracle)	have
been	implemented	with	a	date	and	time.

TABLE	12.1	DATETIME	Types	Across	Platforms

Tip:	Even	Date	and	Time	Types	Can	Differ

Each	implementation	has	its	own	specific	data	type(s)	for	date	and	time
information.	However,	most	implementations	comply	with	the	ANSI	standard;	all
elements	of	the	date	and	time	are	included	in	their	associated	data	types.	The	way
the	date	is	internally	stored	is	implementation-dependent.

Date	Functions
Date	functions	are	available	in	SQL	depending	on	the	options	with	each	specific
implementation.	Date	functions,	similar	to	character	string	functions,	manipulate	the
representation	of	date	and	time	data.	Available	date	functions	are	often	used	to	format	the
output	of	dates	and	time	in	an	appealing	format,	compare	date	values	with	one	another,
compute	intervals	between	dates,	and	so	on.

The	Current	Date
You	might	have	already	raised	the	question,	“How	do	I	get	the	current	date	from	the
database?”	The	need	to	retrieve	the	current	date	from	the	database	might	originate	from
several	situations,	but	the	current	date	is	normally	returned	either	to	compare	it	to	a	stored
date	or	to	return	the	value	of	the	current	date	as	some	sort	of	timestamp.

The	current	date	is	ultimately	stored	on	the	host	computer	for	the	database	and	is	called
the	system	date.	The	database,	which	interfaces	with	the	appropriate	operating	system,	has
the	capability	to	retrieve	the	system	date	for	its	own	purpose	or	to	resolve	database
requests,	such	as	queries.

Take	a	look	at	a	couple	methods	of	attaining	the	system	date	based	on	commands	from
two	different	implementations.

Microsoft	SQL	Server	uses	a	function	called	GETDATE()	to	return	the	system	date.	This
function	is	used	in	a	query	as	follows:

SELECT	GETDATE()

2015-06-01	19:23:38.167

MySQL	uses	the	NOW	function	to	retrieve	the	current	date	and	time.	NOW	is	called	a
pseudocolumn	because	it	acts	as	any	other	column	in	a	table	and	can	be	selected	from	any
table	in	the	database;	although	it	is	not	actually	part	of	the	table’s	definition.

The	following	MySQL	statement	returns	the	output	if	today	were	June	01,	2015:
SELECT	NOW	();

01-JUN-15	13:41:45

Oracle	uses	a	function	known	as	SYSDATE	and	looks	like	this	if	using	the	DUAL	table,
which	is	a	dummy	table	in	Oracle:

SELECT	SYSDATE	FROM	DUAL;

01-JUN-15	13:41:45

Time	Zones
The	use	of	time	zones	might	be	a	factor	when	dealing	with	date	and	time	information.	For
instance,	a	time	of	6:00	p.m.	in	the	central	United	States	does	not	equate	to	the	same	time
in	Australia;	although	the	actual	point	in	time	is	the	same.	Some	of	us	who	live	within	the
daylight	saving	time	zone	are	used	to	adjusting	our	clocks	twice	a	year.	If	time	zones	are
considerations	when	maintaining	data	in	your	case,	you	might	find	it	necessary	to	consider
time	zones	and	perform	time	conversions,	if	available	with	your	SQL	implementation.

The	following	are	some	common	time	zones	and	their	abbreviations:

The	following	shows	examples	of	time	zone	differences	based	on	a	given	time:

Note:	Handling	Time	Zones

Some	implementations	have	functions	that	enable	you	to	deal	with	different	time
zones.	However,	not	all	implementations	support	the	use	of	time	zones.	Be	sure	to
verify	the	use	of	time	zones	in	your	particular	implementation,	as	well	as	the	need
to	deal	with	them	in	the	case	of	your	database.

Adding	Time	to	Dates
Days,	months,	and	other	parts	of	time	can	be	added	to	dates	for	the	purpose	of	comparing
dates	or	to	provide	more	specific	conditions	in	the	WHERE	clause	of	a	query.

Intervals	can	be	used	to	add	periods	of	time	to	a	DATETIME	value.	As	defined	by	the
standard,	intervals	can	manipulate	the	value	of	a	DATETIME	value,	as	in	the	following
examples:
Click	here	to	view	code	image

DATE	‘2015-12-31’	+	INTERVAL	‘1’	DAY

‘2016-01-01’
DATE	‘2015-12-31’	+	INTERVAL	‘1’	MONTH

‘2016-01-31’

The	following	is	an	example	using	the	SQL	Server	function	DATEADD:
Click	here	to	view	code	image

SELECT	FLIGHTSTART,	DATEADD(MONTH,	1,	FLIGHTSTART)	AS	MONTHADDED

FROM	FLIGHTS

WHERE	FLIGHTID<=10;

FLIGHTSTART													MONTHADDED
–––––––—	–––––––—
2013-05-01	07:00:00.000	2013-06-01	07:00:00.000
2013-05-01	07:00:00.000	2013-06-01	07:00:00.000
2013-05-01	07:00:00.000	2013-06-01	07:00:00.000
2013-05-01	07:00:00.000	2013-06-01	07:00:00.000
2013-05-01	07:00:00.000	2013-06-01	07:00:00.000
2013-05-01	07:00:00.000	2013-06-01	07:00:00.000
2013-05-01	07:00:00.000	2013-06-01	07:00:00.000
2013-05-01	07:00:00.000	2013-06-01	07:00:00.000
2013-05-01	07:00:00.000	2013-06-01	07:00:00.000

2013-05-01	07:00:00.000	2013-06-01	07:00:00.000

(10	row(s)	affected)

The	following	example	uses	the	Oracle	function	ADD_MONTHS:
Click	here	to	view	code	image

SELECT	FLIGHTSTART,	ADD_MONTHS(FLIGHTSTART,1)

FROM	FLIGHTS

WHERE	FLIGHTID<=10;

FLIGHTSTART																				MONTHADDED
––––––––––	––––––––––
01-MAY-13																						01-JUN-13
01-MAY-13																						01-JUN-13
01-MAY-13																						01-JUN-13
01-MAY-13																						01-JUN-13
01-MAY-13																						01-JUN-13
01-MAY-13																						01-JUN-13
01-MAY-13																						01-JUN-13
01-MAY-13																						01-JUN-13
01-MAY-13																						01-JUN-13
01-MAY-13																						01-JUN-13

10	rows	selected.

To	add	one	day	to	a	date	in	Oracle,	use	the	following:
Click	here	to	view	code	image

SELECT	FLIGHTSTART,	FLIGHTSTART	+	1	AS	DAYADDED

FROM	FLIGHTS

WHERE	FLIGHTID=1;

FLIGHTSTART																				DAYADDED
––––––––––	––––––––––
01-MAY-13																						02-MAY-13

1	row	selected.

If	you	want	to	do	the	same	query	in	MySQL,	use	the	ANSI	standard	INTERVAL
command,	as	follows.	Otherwise,	MySQL	would	convert	the	date	to	an	integer	and	try	to
perform	the	operation.
Click	here	to	view	code	image

SELECT	FLIGHTSTART,	DATE_ADD(FLIGHTSTART,	INTERVAL	1	DAY)	AS	DAYADDED,

FLIGHTSTART	+	1	AS	ALTDATE

FROM	FLIGHTS

WHERE	FLIGHTID=1;

FLIGHTSTART												DAYADDED														ALTDATE
–––—												–––––							–––––-
01-MAY-13														02-MAY-13													2013602

1	row	selected.

Notice	that	these	examples	in	MySQL,	SQL	Server,	and	Oracle,	although	they	differ
syntactically	from	the	ANSI	examples,	derive	their	results	based	on	the	same	concept	as
described	by	the	SQL	standard.

Miscellaneous	Date	Functions
Table	12.2	shows	some	powerful	date	functions	that	exist	in	the	implementations	for	SQL
Server,	Oracle,	and	MySQL.

TABLE	12.2	Date	Functions	by	Platform

Date	Conversions
The	conversion	of	dates	can	take	place	for	any	number	of	reasons.	Conversions	are	mainly
used	to	alter	the	data	type	of	values	defined	as	a	DATETIME	value	or	any	other	valid	data
type	of	a	particular	implementation.

Typical	reasons	for	date	conversions	are	as	follows:

	To	compare	date	values	of	different	data	types

	To	format	a	date	value	as	a	character	string

	To	convert	a	character	string	into	a	date	format

The	ANSI	CAST	operator	converts	data	types	into	other	data	types.	The	basic	syntax
follows:
Click	here	to	view	code	image

CAST	(EXPRESSION	AS	NEW_DATA_TYPE)

Specific	syntax	examples	of	some	implementations	are	illustrated	in	the	following
subsections,	covering

	The	representation	of	parts	of	a	DATETIME	value

	Conversions	of	dates	to	character	strings

	Conversions	of	character	strings	to	dates

Date	Pictures
A	date	picture	is	composed	of	formatting	elements	used	to	extract	date	and	time
information	from	the	database	in	a	wanted	format.	Date	pictures	might	not	be	available	in
all	SQL	implementations.

Without	the	use	of	a	date	picture	and	some	type	of	conversion	function,	the	date	and	time
information	is	retrieved	from	the	database	in	a	default	format,	such	as

2010-12-31
31-DEC-10
2010-12-31	23:59:01.11
…

What	if	you	want	the	date	to	display	as	the	following?
December	31,	2010

You	would	have	to	convert	the	date	from	a	DATETIME	format	into	a	character	string
format.	This	is	accomplished	by	implementation-specific	functions	for	this	purpose,
further	illustrated	in	the	following	sections.

Table	12.3	displays	some	of	the	common	date	parts	used	in	various	implementations.	This
aids	you	in	using	the	date	picture	in	the	following	sections	to	extract	the	proper
DATETIME	information	from	the	database.

TABLE	12.3	Date	Parts	by	Platform

Note:	Date	Parts	in	MySQL

These	are	some	of	the	most	common	date	parts	for	MySQL.	Other	date	parts	might
be	available	depending	on	the	version	of	MySQL.

Converting	Dates	to	Character	Strings
DATETIME	values	are	converted	to	character	strings	to	alter	the	appearance	of	output
from	a	query.	A	conversion	function	achieves	this.	Two	examples	of	converting	date	and
time	data	into	a	character	string	as	designated	by	a	query	follow.	The	first	uses	SQL
Server:
Click	here	to	view	code	image

SELECT	DISTINCT	FLIGHTSTART	=	DATENAME(MONTH,	FLIGHTSTART)

FROM	FLIGHTS;

FLIGHTSTART
––––––––––
June
August
May
September
July

(5	row(s)	affected)

The	second	example	is	an	Oracle	date	conversion	using	the	TO_CHAR	function:
Click	here	to	view	code	image

SELECT	DISTINCT	FLIGHTSTART,	TO_CHAR(FLIGHTSTART,‘Month	dd,	yyyy’)	FLIGHT

FROM	FLIGHTS

WHERE	FLIGHTID<=10;

FLIGHTSTART																				FLIGHT
––––––––––	––––––––––
01-MAY-13																						May	01,	2013
02-MAY-13																						May	02,	2013
03-MAY-13																						May	03,	2013
04-MAY-13																						May	04,	2013
05-MAY-13																						May	05,	2013
06-MAY-13																						May	06,	2013
07-MAY-13																						May	07,	2013

(7	row(s)	affected)

Converting	Character	Strings	to	Dates
The	following	example	illustrates	a	method	from	a	MySQL	or	Oracle	implementation	of
converting	a	character	string	into	a	date	format.	When	the	conversion	is	complete,	the	data
can	be	stored	in	a	column	defined	as	having	some	form	of	a	DATETIME	data	type.
Click	here	to	view	code	image

SELECT	STR_TO_DATE(‘01/01/2010	12:00:00	AM’,	‘%m/%d/%Y	%h:%i:%s	%p’)	AS

FORMAT_DATE

FROM	FLIGHTS

WHERE	FLIGHTID<=6;

FORMAT_DATE
–––—
01-JAN-10
01-JAN-10
01-JAN-10
01-JAN-10
01-JAN-10
01-JAN-10

6	rows	selected.

You	might	wonder	why	six	rows	were	selected	from	this	query	when	only	one	date	value
was	provided.	It’s	because	the	conversion	of	the	literal	string	was	selected	from	the
FLIGHTS	table	which	we	asked	to	have	all	rows	with	a	FLIGHTID	less	than	or	equal	to
6	returned.	Hence,	the	conversion	of	the	literal	string	was	selected	against	each	record	that

was	returned	from	our	query.

In	Microsoft	SQL	Server	we	instead	use	the	CONVERT	function:
Click	here	to	view	code	image

SELECT	CONVERT(DATETIME,‘02/25/2010	12:00:00	AM’)	AS	FORMAT_DATE

FROM	FLIGHTS

WHERE	FLIGHTID<=6;

FORMAT_DATE
–––––––—
2010-02-25	00:00:00.000
2010-02-25	00:00:00.000
2010-02-25	00:00:00.000
2010-02-25	00:00:00.000
2010-02-25	00:00:00.000
2010-02-25	00:00:00.000

6	rows	selected.

Summary
You	now	should	have	an	understanding	of	DATETIME	values.	ANSI	provided	a	standard;
however,	as	with	many	SQL	elements,	most	implementations	have	deviated	from	the	exact
functions	and	syntax	of	standard	SQL	commands;	although	the	concepts	remain	the	same
as	far	as	the	basic	representation	and	manipulation	of	date	and	time	information.	In	Hour
11,	“Restructuring	the	Appearance	of	Data,”	you	saw	how	functions	varied	depending	on
each	implementation.	This	hour,	you	have	seen	some	of	the	differences	between	date	and
time	data	types,	functions,	and	operators.	Keep	in	mind	that	not	all	examples	discussed	in
this	hour	work	with	your	particular	implementation,	but	the	concepts	of	dates	and	times
are	the	same	and	should	be	applicable	to	any	implementation.

Q&A
Q.	Why	do	implementations	choose	to	deviate	from	a	single	standard	set	of	data
types	and	functions?

A.	Implementations	differ	as	far	as	the	representation	of	data	types	and	functions	mainly
because	of	the	way	each	vendor	has	chosen	to	internally	store	data	and	provide	the
most	efficient	means	of	data	retrieval.	However,	all	implementations	should	provide
the	same	means	for	the	storage	of	date	and	time	values	based	on	the	required
elements	prescribed	by	ANSI,	such	as	the	year,	month,	day,	hour,	minute,	second,	and
so	on.

Q.	What	if	I	want	to	store	date	and	time	information	differently	than	what	is
available	in	my	implementation?

A.	Dates	can	be	stored	in	nearly	any	type	of	format	if	you	choose	to	define	the	column
for	a	date	as	a	variable	length	character.	The	main	thing	to	remember	is	that	when
comparing	date	values	to	one	another,	you	are	usually	required	to	first	convert	the
character	string	representation	of	the	date	to	a	valid	DATETIME	format	for	your
implementation—that	is,	if	appropriate	conversion	functions	are	available.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	From	where	is	the	system	date	and	time	normally	derived?

2.	What	are	the	standard	internal	elements	of	a	DATETIME	value?

3.	What	could	be	a	major	factor	concerning	the	representation	and	comparison	of	date
and	time	values	if	your	company	is	an	international	organization?

4.	Can	a	character	string	date	value	be	compared	to	a	date	value	defined	as	a	valid
DATETIME	data	type?

5.	What	would	you	use	in	SQL	Server	and	Oracle	to	get	the	current	date	and	time?

Exercises
1.	Type	the	following	SQL	code	into	the	sql	prompt	in	each	of	the	implementations
to	display	the	current	date	from	the	database:

Click	here	to	view	code	image
For	SQL	Server:	SELECT	GETDATE();
For	Oracle:	SELECT	SYSDATE	FROM	DUAL;

2.	Type	the	following	SQL	code	to	display	each	employee’s	hire	date:
SELECT	EMPLOYEEID,	HIREDATE
FROM	EMPLOYEES;

3.	In	SQL	Server,	dates	can	be	segmented	into	various	parts	by	using	functions	like
YEAR	and	MONTH.	Type	the	following	code	to	display	the	year	and	month	that	each
employee	was	hired:

Click	here	to	view	code	image
SELECT	EMPLOYEEID,	YEAR(HIREDATE)	AS	YEAR_HIRED,	MONTH(HIREDATE)	AS	MONTH_
HIRED
FROM	EMPLOYEES;

4.	Type	in	a	statement	similar	to	this	SQL	Server	implementation	to	display	each	of	the
employees’	hire	dates	along	with	today’s	date:

Click	here	to	view	code	image
SELECT	EMPLOYEEID,	HIREDATE,	GETDATE()	as	TODAYSDATE
FROM	EMPLOYEES;

5.	Using	Exercise	4,	determine	what	day	of	the	week	each	employee	was	hired.

6.	Write	a	query	like	Exercise	4	except	use	a	function	to	show	how	many	days	the

employee	has	worked	for	the	company.	Could	you	also	estimate	years?

7.	Write	a	query	to	determine	today’s	Julian	date	(day	of	year).

Part	IV:	Building	Sophisticated	Database
Queries

Hour	13.	Joining	Tables	in	Queries

What	You’ll	Learn	in	This	Hour:

	An	introduction	to	table	joins

	The	different	types	of	joins

	How	and	when	joins	are	used

	Numerous	practical	examples	of	table	joins

	The	effects	of	improperly	joined	tables

	Renaming	tables	in	a	query	using	an	alias

To	this	point,	all	database	queries	you	have	executed	in	this	book	have	extracted	data	from
a	single	table.	During	this	hour,	you	learn	how	to	join	tables	in	a	query	so	that	you	can
retrieve	data	from	multiple	tables.

Selecting	Data	from	Multiple	Tables
Having	the	capability	to	select	data	from	multiple	tables	is	one	of	SQL’s	most	powerful
features.	Without	this	capability,	the	entire	relational	database	concept	would	not	be
feasible.	Single-table	queries	are	sometimes	quite	informative,	but	in	the	real	world,	the
most	practical	queries	are	those	whose	data	is	acquired	from	multiple	tables	within	the
database.

As	you	witnessed	in	Hour	4,	“The	Normalization	Process,”	a	relational	database	is	broken
into	smaller,	more	manageable	tables	for	simplicity	and	the	sake	of	overall	management
ease.	As	tables	are	divided	into	smaller	tables,	the	related	tables	are	created	with	common
columns:	primary	keys	and	foreign	keys.	These	keys	are	used	to	join	related	tables	to	one
another.

You	might	ask	why	you	should	normalize	tables	if,	in	the	end,	you	are	going	to	rejoin	the
tables	to	retrieve	the	data	you	want.	You	rarely	select	all	data	from	all	tables,	so	it	is	better
to	pick	and	choose	according	to	the	needs	of	each	query.	Although	performance	might
suffer	slightly	due	to	a	normalized	database,	overall	coding	and	maintenance	are	much
simpler.	Remember	that	you	generally	normalize	the	database	to	reduce	redundancy	and
increase	data	integrity.	Your	overreaching	task	as	a	database	administrator	is	to	ensure	the
safeguarding	of	data.

Understanding	Joins
A	join	combines	two	or	more	tables	to	retrieve	data	from	multiple	tables.	Although
different	implementations	have	many	ways	of	joining	tables,	you	concentrate	on	the	most
common	joins	in	this	lesson.	The	types	of	joins	that	you	learn	are

	Equijoins	or	inner	joins

	Non-equijoins

	Outer	joins

	Self	joins

As	you	have	learned	from	previous	hours,	both	the	SELECT	and	FROM	clauses	are
required	SQL	statement	elements;	the	WHERE	clause	is	a	required	element	of	an	SQL
statement	when	joining	tables.	The	tables	joined	are	listed	in	the	FROM	clause.	The	join	is
performed	in	the	WHERE	clause.	Several	operators	can	be	used	to	join	tables,	such	as	=,	<,
>,	<>,	<=,	>=,	!=,	BETWEEN,	LIKE,	and	NOT.	However,	the	most	common	operator	is
the	equal	symbol.

Joins	of	Equality
Perhaps	the	most	used	and	important	of	the	joins	is	the	equijoin,	also	referred	to	as	an
inner	join.	The	equijoin	joins	two	tables	with	a	common	column	in	which	each	is	usually
the	primary	key.

The	syntax	for	an	equijoin	is
Click	here	to	view	code	image

SELECT	TABLE1.COLUMN1,	TABLE2.COLUMN2…

FROM	TABLE1,	TABLE2	[,	TABLE3]

WHERE	TABLE1.COLUMN_NAME	=	TABLE2.COLUMN_NAME

[AND	TABLE1.COLUMN_NAME	=	TABLE3.COLUMN_NAME]

Look	at	the	following	example:
Click	here	to	view	code	image

SELECT	EMPLOYEES.EMPLOYEEID,EMPLOYEES.FIRSTNAME,EMPLOYEES.LASTNAME,
							AIRPORTS.AIRPORTID,AIRPORTS.AIRPORTNAME
FROM	EMPLOYEES,
							AIRPORTS
WHERE	EMPLOYEES.AIRPORTID	=	AIRPORTS.AIRPORTID;

This	SQL	statement	returns	the	employees’	identification,	name,	and	the	name	of	the
airport	at	which	they	work.	You	need	to	tell	the	query	how	the	tables	are	related,	which	is
the	purpose	of	the	WHERE	clause.	Here	you	specify	that	the	two	tables	are	linked	via	the
AIRPORTID	column.	Because	the	AIRPORTID	exists	in	both	tables,	you	must	justify
both	columns	with	the	table	name	in	your	column	listing.	By	justifying	the	columns	with
the	table	names,	you	tell	the	database	server	where	to	get	the	data.

Data	in	the	following	example	is	selected	from	EMPLOYEES	and	AIRPORTS	because
wanted	data	resides	in	each	of	the	two	tables.	An	equijoin	is	used.
Click	here	to	view	code	image

SELECT	EMPLOYEES.EMPLOYEEID,EMPLOYEES.FIRSTNAME,EMPLOYEES.LASTNAME,

							AIRPORTS.AIRPORTID,AIRPORTS.AIRPORTNAME
FROM	EMPLOYEES,

							AIRPORTS
WHERE	EMPLOYEES.AIRPORTID	=	AIRPORTS.AIRPORTID

AND	EMPLOYEEID<=10;

EMPLOYEEID		FIRSTNAME														LASTNAME																AIRPORTID				AIRPORTNAME
–––—	–––––––-	–––––––—	––––	–––—
1											Erlinda																Iner																				27											Red

Dog
2											Nicolette														Denty																			1209									Errol
3											Arlen																		Sabbah																		1209									Errol
4											Yulanda																Loock																			1209									Errol
5											Tena																			Sacks																			1209									Errol
6											Inocencia														Arcoraci																1210									Esler
Field
7											Christa																Astin																			1211									Espanola
8											Tamara																	Contreraz															1211									Espanola
9											Michale																Capito																		1211									Espanola
10										Kimberly															Ellamar																	1211									Espanola

(10	row(s)	affected)

Notice	that	each	column	in	the	SELECT	clause	is	preceded	by	the	associated	table	name	to
identify	each	column.	This	is	called	qualifying	columns	in	a	query.	Qualifying	columns	is
only	necessary	for	columns	that	exist	in	more	than	one	table	referenced	by	a	query.	You
usually	qualify	all	columns	for	consistency	and	to	avoid	questions	when	debugging	or
modifying	SQL	code.

In	addition,	the	SQL	syntax	provides	for	a	more	readable	version	of	the	previous	syntax	by
introducing	the	JOIN	syntax.	The	JOIN	syntax	follows:
Click	here	to	view	code	image

SELECT	TABLE1.COLUMN1,	TABLE2.COLUMN2…
FROM	TABLE1
INNER	JOIN	TABLE2	ON	TABLE1.COLUMN_NAME	=	TABLE2.COLUMN_NAME

As	you	can	see,	the	JOIN	operator	is	removed	from	the	WHERE	clause	and	instead
replaced	with	the	JOIN	syntax.	The	table	joined	is	added	after	the	JOIN	syntax,	and	then
the	JOIN	operators	are	placed	after	the	ON	qualifier.	In	the	following	example,	the
previous	query	for	employee	identification	and	hire	date	is	rewritten	to	use	the	JOIN
syntax:
Click	here	to	view	code	image

SELECT	EMPLOYEES.EMPLOYEEID,EMPLOYEES.FIRSTNAME,EMPLOYEES.LASTNAME,
							AIRPORTS.AIRPORTID,AIRPORTS.AIRPORTNAME
FROM	EMPLOYEES
					INNER	JOIN	AIRPORTS
ON	EMPLOYEES.AIRPORTID	=	AIRPORTS.AIRPORTID
WHERE	EMPLOYEEID<=10;

Notice	that	this	query	returns	the	same	set	of	data	as	the	previous	version,	even	though	the
syntax	is	different.	So	you	may	use	either	version	of	the	syntax	without	fear	of	coming	up
with	different	results.

Using	Table	Aliases
You	use	table	aliases	to	rename	a	table	in	a	particular	SQL	statement.	Renaming	is
temporary;	the	actual	table	name	does	not	change	in	the	database.	As	you	learn	later	in	the
“Self	Joins”	section,	giving	the	tables	aliases	is	a	necessity	for	the	self	join.	Aliases	are
most	often	used	to	save	keystrokes,	which	results	in	a	shorter	and	easier-to-read	SQL
statement.	In	addition,	fewer	keystrokes	means	fewer	keystroke	errors.	Also,
programming	errors	are	typically	less	frequent	if	you	can	refer	to	an	alias,	which	is	often
shorter	in	length	and	more	descriptive	of	the	data	with	which	you	are	working.	Giving
tables	aliases	also	means	that	the	columns	selected	must	be	qualified	with	the	table	alias.
The	following	are	some	examples	of	table	aliases	and	the	corresponding	columns:
Click	here	to	view	code	image

SELECT	E.EMPLOYEEID,E.FIRSTNAME,E.LASTNAME,
							A.AIRPORTNAME,	E.SALARY
FROM	EMPLOYEES	E
					INNER	JOIN		AIRPORTS	A
ON	E.AIRPORTID	=	A.AIRPORTID
WHERE	E.SALARY=73000
AND	A.AIRPORTNAME	LIKE	‘N%’;

In	the	preceding	SQL	statement,	EMPLOYEES	has	been	renamed	E.	and	AIRPORTS	has
been	renamed	A.	The	choice	of	what	to	rename	the	tables	is	arbitrary.	These	letters	were
chosen	because	EMPLOYEES	starts	with	E	and	AIRPORTS	starts	with	A.	The	selected
columns	were	justified	with	the	corresponding	table	alias.	Note	that	SALARY	was	used	in
the	WHERE	clause	and	was	justified	with	the	table	alias.

Joins	of	Non-Equality
A	non-equijoin	joins	two	or	more	tables	based	on	a	specified	column	value	not	equaling	a
specified	column	value	in	another	table.	The	syntax	for	the	non-equijoin	follows:
Click	here	to	view	code	image

FROM	TABLE1,	TABLE2	[,	TABLE3]
WHERE	TABLE1.COLUMN_NAME	!=	TABLE2.COLUMN_NAME
[AND	TABLE1.COLUMN_NAME	!=	TABLE2.COLUMN_NAME]

An	example	follows:
Click	here	to	view	code	image

SELECT	A.AIRPORTID,	A.AIRPORTNAME,	A.COUNTRYCODE
FROM	AIRPORTS	A
					INNER	JOIN	EMPLOYEES	E
ON	A.AIRPORTID<>E.AIRPORTID;

The	preceding	SQL	statement	returns	the	airport	information	for	all	airports	that	do	not
have	a	corresponding	record	in	both	tables.	The	following	example	is	a	join	of	non-
equality:
Click	here	to	view	code	image

SELECT	TOP	10	A.AIRPORTID,	A.AIRPORTNAME,	A.COUNTRYCODE

FROM	AIRPORTS	A

					INNER	JOIN	EMPLOYEES	E
ON	A.AIRPORTID<>E.AIRPORTID;

AIRPORTID			AIRPORTNAME																				COUNTRYCODE
–––—	––––––––––	–––—
1											Bamiyan																								AF
2											Bost																											AF
3											Chakcharan																					AF
4											Darwaz																									AF
5											Faizabad																							AF
6											Farah																										AF
7											Gardez																									AF
8											Ghazni																									AF
9											Herat																										AF
10										Jalalabad																						AF

(10	row(s)	affected)

Caution:	Non-Equijoins	Can	Add	Data

When	using	non-equijoins,	you	might	receive	several	rows	of	data	that	are	of	no	use
to	you.	Check	your	results	carefully.

You	might	be	curious	and	want	to	remove	the	TOP	10	clause	on	the	SELECT	statement
to	see	how	many	rows	are	actually	returned.	You	might	be	surprised	when	it	returns	more
than	51	million	rows	of	data.	Because	it	is	a	non-equality	match	we	are	looking	for,	each
row	in	the	AIRPORTS	table	returns	a	row	for	each	row	in	the	EMPLOYEES	table	that	does
not	match.	So	with	9100+	airports	and	5600+	employees,	a	lot	of	non-matching	rows
exist.

In	the	earlier	section’s	test	for	equality	example,	each	of	the	rows	in	the	first	table	were
paired	with	only	one	row	in	the	second	table	(each	row’s	corresponding	row).

Outer	Joins
An	outer	join	returns	all	rows	that	exist	in	one	table,	even	though	corresponding	rows	do
not	exist	in	the	joined	table.	The	(+)	symbol	denotes	an	outer	join	in	a	query	and	is
placed	at	the	end	of	the	table	name	in	the	WHERE	clause.	The	table	with	the	(+)	should	be
the	table	that	does	not	have	matching	rows.	In	many	implementations,	the	outer	join	is
broken	into	joins	called	left	outer	join,	right	outer	join,	and	full	outer	join.	The	outer	join
in	these	implementations	is	normally	optional.

Caution:	Join	Syntax	Varies	Widely

You	must	check	your	particular	implementation	for	exact	usage	and	syntax	of	the
outer	join.	The	(+)	symbol	is	used	by	some	major	implementations,	but	it	is
nonstandard.	This	varies	somewhat	between	versions	of	implementations.	For
example,	Microsoft	SQL	Server	2000	supports	this	type	of	join	syntax,	but	SQL
Server	2005	and	newer	versions	do	not.	Be	sure	to	carefully	consider	using	this
syntax	before	implementing.

The	general	syntax	for	an	outer	join	is
Click	here	to	view	code	image

FROM	TABLE1

{RIGHT	|	LEFT	|	FULL}	[OUTER]	JOIN
ON	TABLE2

The	Oracle	syntax	is
Click	here	to	view	code	image

FROM	TABLE1,	TABLE2	[,	TABLE3]
WHERE	TABLE1.COLUMN_NAME[(+)]	=	TABLE2.COLUMN_NAME[(+)]
[AND	TABLE1.COLUMN_NAME[(+)]	=	TABLE3.COLUMN_NAME[(+)]]

First,	create	a	temporary	table	to	use	called	HIGH_SALARIES	using	the	following	query.
The	idea	is	to	get	a	listing	of	the	distinct	salaries	that	are	equal	to	or	greater	than
$70,000.00.

In	SQL	Server	this	would	be
SELECT	DISTINCT	Salary

INTO	HIGH_SALARIES

FROM	Employees

WHERE	Salary>=70000;

(5	row(s)	affected)

In	Oracle	this	would	be
INSERT	INTO	HIGH_SALARIES

SELECT	DISTINCT	Salary

FROM	Employees

WHERE	Salary>=70000;

5	rows	selected

The	concept	of	the	outer	join	is	explained	in	the	next	two	examples.	In	the	first	example,
the	employee	name,	city,	and	high	salary	amount	are	selected;	both	values	are	extracted
from	two	separate	tables.	One	important	factor	to	keep	in	mind	is	that	there	might	not	be	a
corresponding	record	in	HIGH_SALARIES	for	every	employee.	A	regular	join	of	equality
is	performed:
Click	here	to	view	code	image

SELECT	E.FIRSTNAME,E.LASTNAME,E.CITY,H.SALARY	AS	HIGH_SALARY

FROM	EMPLOYEES	E	,

					HIGH_SALARIES	H
WHERE	E.SALARY=H.SALARY

AND	E.STATE=‘IN’;

FIRSTNAME																LASTNAME													CITY																						HIGH_SALARY
––––––––	––––––—	––––––––-	–––—
Carletta																	Farrelly													Rensselaer																71000.00
Latashia																	Trussell													Crane																					72000.00

(2	row(s)	affected)

Only	two	rows	were	selected	with	only	two	salaries	listed,	but	there	are	many	more
employees	that	work	in	Indiana.	You	want	to	display	all	employees,	regardless	if	they
make	what	is	considered	a	high	salary.

The	next	example	accomplishes	the	wanted	output	through	the	use	of	an	outer	join.
Oracle’s	syntax	is	used	here:
Click	here	to	view	code	image

SELECT	E.FIRSTNAME,E.LASTNAME,E.CITY,H.SALARY	AS	HIGH_SALARY

FROM	EMPLOYEES	E	,

					HIGH_SALARIES	H
WHERE	E.SALARY=H.SALARY(+)

AND	E.STATE=‘IN’

ORDER	BY	H.SALARY	DESC;

FIRSTNAME												LASTNAME													CITY																	HIGH_SALARY
––––––—	––––––—	––––––—	––––––—
Latashia													Trussell													Crane																72000.00
Carletta													Farrelly													Rensselaer											71000.00
Nelle																Mocco																Rensselaer											NULL
Caterina													Bourgeault											Richmond	IN										NULL
Lannie															Geldmacher											Richmond	IN										NULL
Neil																	Golda																Andrews														NULL
.
.
.
.

94	rows	selected.

You	can	also	use	the	more	verbose	standard	join	syntax	discussed	earlier	to	achieve	the
same	result,	which	makes	it	easier	to	read:
Click	here	to	view	code	image

SELECT	E.FIRSTNAME,E.LASTNAME,E.CITY,H.SALARY	AS	HIGH_SALARY

FROM	EMPLOYEES	E	,

					LEFT	OUTER	JOIN	HIGH_SALARIES	H
					ON	E.SALARY=H.SALARY
WHERE		E.STATE=‘IN’

ORDER	BY	H.SALARY	DESC;

FIRSTNAME												LASTNAME													CITY																	HIGH_SALARY
––––––—	––––––—	––––––—	––––––—
Latashia													Trussell													Crane																72000.00
Carletta													Farrelly													Rensselaer											71000.00
Nelle																Mocco																Rensselaer											NULL
Caterina													Bourgeault											Richmond	IN										NULL
Lannie															Geldmacher											Richmond	IN										NULL
Neil																	Golda																Andrews														NULL
.
.
.
.

(94	row(s)	affected)

All	employees	in	Indiana	were	returned	by	the	query,	even	though	they	might	not	have
had	a	salary	that	matched	our	table’s	criteria	of	a	high	salary.	The	outer	join	is	inclusive	of
all	rows	of	data	in	EMPLOYEES,	regardless	whether	a	corresponding	row	exists	in
HIGH_SALARIES.

Tip:	Use	of	Outer	Joins

You	can	use	the	outer	join	on	only	one	side	of	a	JOIN	condition;	however,	you	can
use	an	outer	join	on	more	than	one	column	of	the	same	table	in	the	JOIN	condition.

Self	Joins
A	self	join	joins	a	table	to	itself,	as	if	the	table	were	two	tables,	temporarily	renaming	at
least	one	table	in	the	SQL	statement	using	a	table	alias.	The	syntax	follows:
Click	here	to	view	code	image

SELECT	A.COLUMN_NAME,	B.COLUMN_NAME,	[C.COLUMN_NAME]
FROM	TABLE1	A,	TABLE2	B	[,	TABLE3	C]
WHERE	A.COLUMN_NAME	=	B.COLUMN_NAME
[AND	A.COLUMN_NAME	=	C.COLUMN_NAME]

Following	is	an	example:
Click	here	to	view	code	image

SELECT	A.LASTNAME,	B.LASTNAME,	A.FIRSTNAME
FROM	EMPLOYEES	A,
					EMPLOYEES	B
WHERE	A.LASTNAME	=	B.LASTNAME;

The	preceding	SQL	statement	returns	the	employees’	first	names	for	all	the	employees
with	the	same	last	name	from	EMPLOYEES.	Self	joins	are	useful	when	all	the	data	you
want	to	retrieve	resides	in	one	table,	but	you	must	somehow	compare	records	in	the	table
to	other	records	in	the	table.

You	may	also	use	the	alternative	INNER	JOIN	syntax	as	shown	here	to	obtain	the	same
result:
Click	here	to	view	code	image

SELECT	A.LASTNAME,	B.LASTNAME,	A.FIRSTNAME
FROM	EMPLOYEES	A
INNER	JOIN	EMPLOYEES	B
ON	A.LASTNAME	=	B.LASTNAME;

Another	common	example	used	to	explain	a	self	join	follows:	Suppose	you	create	a	table
that	stores	an	employee	identification	number,	the	employee’s	name,	and	the	employee
identification	number	of	the	employee’s	manager.	You	might	want	to	produce	a	list	of	all
employees	and	their	managers’	names.	The	problem	is	that	the	manager’s	name	does	not
exist	as	a	category	in	the	table:
Click	here	to	view	code	image

SELECT	E.EmployeeID,E.FirstName,E.LastName,

CASE	WHEN	E.EmployeeID%3=0	THEN	3	WHEN	E.EmployeeID%2=0	THEN	2	ELSE	1	END	AS

MGR_ID

INTO	EMPLOYEE_MGR

FROM	EMPLOYEES	E

WHERE	E.EmployeeID<=10;

(10	row(s)	affected)

SELECT	*	FROM	EMPLOYEE_MGR;

EmployeeID		FirstName																						LastName																							MGR_ID
–––—	––––––––––	––––––––––	–––
1											Erlinda																								Iner																											1
2											Nicolette																						Denty																										2
3											Arlen																										Sabbah																									3
4											Yulanda																								Loock																										2
5											Tena																											Sacks																										1

6											Inocencia																						Arcoraci																							3
7											Christa																								Astin																										1
8											Tamara																									Contreraz																						2
9											Michale																								Capito																									3
10										Kimberly																							Ellamar																								2

(10	row(s)	affected)

In	the	following	example,	we	have	included	the	table	EMPLOYEE_MGR	twice	in	the	FROM
clause	of	the	query,	giving	the	table	two	aliases	for	the	purpose	of	the	query.	By	providing
two	aliases,	it	is	as	if	you	are	selecting	from	two	distinct	tables.	All	managers	are	also
employees,	so	the	JOIN	condition	between	the	two	tables	compares	the	value	of	the
employee	identification	number	from	the	first	table	with	the	manager	identification
number	in	the	second	table.	The	first	table	acts	as	a	table	that	stores	employee	information,
whereas	the	second	table	acts	as	a	table	that	stores	manager	information:
Click	here	to	view	code	image

SELECT	E1.FIRSTNAME,	E2.FIRSTNAME

FROM	EMPLOYEE_MGR	E1,	EMPLOYEE_MGR	E2

WHERE	E1.MGR_ID	=	E2.EMPLOYEEID;

FIRSTNAME																						FIRSTNAME
––––––––––	––––––––––
Erlinda																								Erlinda
Nicolette																						Nicolette
Arlen																										Arlen
Yulanda																								Nicolette
Tena																											Erlinda
Inocencia																						Arlen
Christa																								Erlinda
Tamara																									Nicolette
Michale																								Arlen
Kimberly																							Nicolette

(10	row(s)	affected)

Joining	on	Multiple	Keys
Most	join	operations	involve	the	merging	of	data	based	on	a	key	in	one	table	and	a	key	in
another	table.	Depending	on	how	your	database	has	been	designed,	you	might	have	to	join
on	more	than	one	key	field	to	accurately	depict	that	data	in	your	database.	You	might	have
a	table	that	has	a	primary	key	that	is	composed	of	more	than	one	column.	You	might	also
have	a	foreign	key	in	a	table	that	consists	of	more	than	one	column,	which	references	the
multiple	column	primary	key.

Consider	the	following	Oracle	tables	that	are	used	here	for	examples	only:
Click	here	to	view	code	image

SQL>	desc	prod
Name																																						Null?				Type
–––––––––––––-		––-		–––––––––—
SERIAL_NUMBER																													NOT	NULL	NUMBER(10)
VENDOR_NUMBER																													NOT	NULL	NUMBER(10)
PRODUCT_NAME																														NOT	NULL	VARCHAR2(30)
COST																																						NOT	NULL	NUMBER(8,2)
SQL>	desc	ord
Name																																						Null?				Type

–––––––––––––			––-		–––––––––—
ORD_NO																																				NOT	NULL	NUMBER(10)
PROD_NUMBER																															NOT	NULL	NUMBER(10)
VENDOR_NUMBER																													NOT	NULL	NUMBER(10)
QUANTITY																																		NOT	NULL	NUMBER(5)
ORD_DATE																																		NOT	NULL	DATE

The	primary	key	in	PROD	is	the	combination	of	the	columns	SERIAL_NUMBER	and
VENDOR_NUMBER.	Perhaps	two	products	can	have	the	same	serial	number	within	the
distribution	company,	but	each	serial	number	is	unique	per	vendor.

The	foreign	key	in	ORD	is	also	the	combination	of	the	columns	SERIAL_NUMBER	and
VENDOR_NUMBER.

When	selecting	data	from	both	tables	(PROD	and	ORD),	the	join	operation	might	appear	as
follows:
Click	here	to	view	code	image

SELECT	P.PRODUCT_NAME,	O.ORD_DATE,	O.QUANTITY
FROM	PROD	P,	ORD	O
WHERE	P.SERIAL_NUMBER	=	O.SERIAL_NUMBER
		AND	P.VENDOR_NUMBER	=	O.VENDOR_NUMBER;

Similarly,	if	you	were	using	the	INNER	JOIN	syntax,	you	would	merely	list	the	multiple
join	operations	after	the	ON	keyword,	as	shown	here:
Click	here	to	view	code	image

SELECT	P.PRODUCT_NAME,	O.ORD_DATE,	O.QUANTITY
FROM	PROD	P,
INNER	JOIN	ORD	O	ON	P.SERIAL_NUMBER	=	O.SERIAL_NUMBER
		AND	P.VENDOR_NUMBER	=	O.VENDOR_NUMBER;

Join	Considerations
You	should	consider	several	things	before	using	joins:	what	columns(s)	to	join	on,	whether
there	is	no	common	column	to	join	on,	and	what	the	performance	issues	are.	More	joins	in
a	query	means	the	database	server	has	to	do	more	work,	which	means	that	more	time	is
taken	to	retrieve	data.	You	cannot	avoid	joins	when	retrieving	data	from	a	normalized
database,	but	it	is	imperative	to	ensure	that	joins	are	performed	correctly	from	a	logical
standpoint.	Incorrect	joins	can	result	in	serious	performance	degradation	and	inaccurate
query	results.	Performance	issues	are	discussed	in	more	detail	in	Hour	18,	“Managing
Database	Users.”

Using	a	Base	Table
What	should	you	join	on?	Should	you	have	the	need	to	retrieve	data	from	two	tables	that
do	not	have	a	common	column	to	join,	you	must	join	on	another	table	that	has	a	common
column	or	columns	to	both	tables.	That	table	becomes	the	base	table.	A	base	table	joins
one	or	more	tables	that	have	common	columns,	or	joins	tables	that	do	not	have	common
columns.

Say	you	have	a	need	to	use	FLIGHTS	and	AIRPORTS.	There	is	no	common	column	in
which	to	join	the	tables.	Now	look	at	ROUTES.	ROUTES	has	a	ROUTEID	column	to	join
with	FLIGHTS.	AIRPORTS	has	an	AIRPORTID	column,	which	is	also	in	ROUTES	under

the	name	of	SOURCEAIRPORTID	and	DESTINATIONAIRPORTID.	The	JOIN
conditions	and	results	would	look	like	the	following:
Click	here	to	view	code	image

SELECT	F.FLIGHTID,A.AIRPORTNAME,F.FLIGHTSTART

FROM	FLIGHTS	F

INNER	JOIN	ROUTES	R	ON	F.RouteID=R.RouteID

INNER	JOIN	Airports	A	ON	R.SourceAirportID=A.AirportID

WHERE	F.FlightID=1;

FLIGHTID				AIRPORTNAME																				FLIGHTSTART
–––—	––––––––––	–––––––—
1											Blue	Grass																					2013-05-01	07:00:00.000

(1	row(s)	affected)

Note	the	use	of	table	aliases	and	their	use	on	the	columns	in	the	WHERE	clause.

The	Cartesian	Product
The	Cartesian	product	is	a	result	of	a	Cartesian	join	or	“no	join.”	If	you	select	from	two	or
more	tables	and	do	not	join	the	tables,	your	output	is	all	possible	rows	from	all	the	tables
selected.	If	your	tables	were	large,	the	result	could	be	hundreds	of	thousands,	or	even
millions,	of	rows	of	data.	A	WHERE	clause	is	highly	recommended	for	SQL	statements
retrieving	data	from	two	or	more	tables.	The	Cartesian	product	is	also	known	as	a	cross
join.

The	syntax	is
Click	here	to	view	code	image

FROM	TABLE1,	TABLE2	[,	TABLE3]
WHERE	TABLE1,	TABLE2	[,	TABLE3]

Following	is	an	example	of	a	cross	join,	or	the	dreaded	Cartesian	product:
Click	here	to	view	code	image

SELECT	E.EMPLOYEEID,	E.LASTNAME,	A.AIRPORTNAME

FROM	EMPLOYEES	E,

					AIRPORTS	A;

EMPLOYEEID		LASTNAME																							AIRPORTNAME
–––—	––––––––––	––––––––––
1											Iner																											Bamiyan
1											Iner																											Bost
1											Iner																											Chakchara
.
.
.
.

(51537035	row(s)	affected)

Data	is	selected	from	two	separate	tables,	yet	no	JOIN	operation	is	performed.	Because
you	have	not	specified	how	to	join	rows	in	the	first	table	with	rows	in	the	second	table,	the
database	server	pairs	every	row	in	the	first	table	with	every	row	in	the	second	table.
Because	each	table	has	several	thousand	rows	of	data	each,	the	product	of	51537035	rows
selected	is	achieved	from	5611	rows	multiplied	by	9185	rows.

To	fully	understand	exactly	how	the	Cartesian	product	is	derived,	study	the	following
example:
Click	here	to	view	code	image

SQL>	SELECT	X	FROM	TABLE1;

X
-
A
B
C
D

4	rows	selected.

SQL>	SELECT	V	FROM	TABLE2;

X
-
A
B
C
D

4	rows	selected.

SQL>	SELECT	TABLE1.X,	TABLE2.X

		2*	FROM	TABLE1,	TABLE2;

X	X
-	-
A	A
B	A
C	A
D	A
A	B
B	B
C	B
D	B
A	C
B	C
C	C
D	C
A	D
B	D
C	D
D	D

16	rows	selected.

Caution:	Ensure	That	All	Tables	Are	Joined

Be	careful	to	join	all	tables	in	a	query.	If	two	tables	in	a	query	have	not	been	joined
and	each	table	contains	1,000	rows	of	data,	the	Cartesian	product	consists	of	1,000
rows	multiplied	by	1,000	rows,	which	results	in	a	total	of	1,000,000	rows	of	data
returned.	Cartesian	products	when	dealing	with	large	amounts	of	data	can	cause	the
host	computer	to	stall	or	crash	in	some	cases	based	on	resource	usage	on	the	host
computer.	Therefore,	it	is	important	for	the	database	administrator	(DBA)	and
system	administrator	to	closely	monitor	for	long-running	queries.

Summary
This	hour	introduced	you	to	one	of	the	most	robust	features	of	SQL:	the	table	join.
Imagine	the	limits	if	you	could	not	extract	data	from	more	than	one	table	in	a	single	query.
You	were	shown	several	types	of	joins,	each	serving	its	own	purpose	depending	on
conditions	placed	on	the	query.	Joins	are	used	to	link	data	from	tables	based	on	equality
and	non-equality.	Outer	joins	are	powerful,	allowing	data	to	be	retrieved	from	one	table,
even	though	associated	data	is	not	found	in	a	joined	table.	Self	joins	are	used	to	join	a
table	to	itself.	Beware	of	the	cross	join,	more	commonly	known	as	the	Cartesian	product.
The	Cartesian	product	is	the	resultset	of	a	multiple	table	query	without	a	join,	often
yielding	a	large	amount	of	unwanted	output.	When	selecting	data	from	more	than	one
table,	be	sure	to	properly	join	the	tables	according	to	the	related	columns	(normally
primary	keys).	Failure	to	properly	join	tables	could	result	in	incomplete	or	inaccurate
output.

Q&A
Q.	When	joining	tables,	must	they	be	joined	in	the	same	order	that	they	appear	in
the	FROM	clause?

A.	No,	they	do	not	have	to	appear	in	the	same	order;	however,	performance	might
benefit	depending	on	the	order	of	tables	in	the	FROM	clause	and	the	order	in	which
tables	are	joined.

Q.	When	using	a	base	table	to	join	unrelated	tables,	must	I	select	any	columns
from	the	base	table?

A.	No,	the	use	of	a	base	table	to	join	unrelated	tables	does	not	mandate	that	columns
from	the	base	table	be	selected.

Q.	Can	I	join	on	more	than	one	column	between	tables?

A.	Yes,	some	queries	might	require	you	to	join	on	more	than	one	column	per	table	to
provide	a	complete	relationship	between	rows	of	data	in	the	joined	tables.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	What	type	of	join	would	you	use	to	return	records	from	one	table,	regardless	of	the
existence	of	associated	records	in	the	related	table?

2.	The	JOIN	conditions	are	located	in	which	parts	of	the	SQL	statement?

3.	What	type	of	JOIN	do	you	use	to	evaluate	equality	among	rows	of	related	tables?

4.	What	happens	if	you	select	from	two	different	tables	but	fail	to	join	the	tables?

5.	Use	the	following	tables	to	answer	the	next	questions:
Click	here	to	view	code	image

ORDERS_TBL
ORD_NUM						VARCHAR(10)						NOT	NULL					primary	key
CUST_ID						VARCHAR(10)						NOT	NULL
PROD_ID						VARCHAR(10)						NOT	NULL
QTY										Integer(6)							NOT	NULL
ORD_DATE					DATETIME
PRODUCTS_TBL
PROD_ID						VARCHAR(10)						NOT	NULL					primary	key
PROD_DESC				VARCHAR(40)						NOT	NULL
COST									DECIMAL(,2)						NOT	NULL

Is	the	following	syntax	correct	for	using	an	outer	join?
Click	here	to	view	code	image

SELECT	C.CUST_ID,	C.CUST_NAME,	O.ORD_NUM
FROM	CUSTOMER_TBL	C,	ORDERS_TBL	O
WHERE	C.CUST_ID(+)	=	O.CUST_ID(+)

What	would	the	query	look	like	if	you	used	the	verbose	JOIN	syntax?

Exercises
1.	Type	the	following	code	into	the	database	and	study	the	resultset	(Cartesian
product):

Click	here	to	view	code	image
SELECT	E.LASTNAME,	E.FIRSTNAME,	A.AIRPORTNAME
FROM	EMPLOYEES	E,
					AIRPORTS	A
WHERE	E.STATE=‘IN’;

2.	Type	the	following	code	to	properly	join	EMPLOYEES	and	AIRPORTS:
Click	here	to	view	code	image

SELECT	E.LASTNAME,	E.FIRSTNAME,	A.AIRPORTNAME
FROM	EMPLOYEES	E,
					AIRPORTS	A
WHERE	E.AIRPORTID=A.AIRPORTID
AND	E.STATE=‘IN’;

3.	Rewrite	the	SQL	query	from	Exercise	2,	using	the	INNER	JOIN	syntax.

4.	Write	a	SQL	statement	to	return	the	FLIGHTID,	AIRPORTNAME,	and	CITY
columns	from	AIRPORTS	and	FLIGHTDURATION	and	FLIGHTSTART	columns
from	FLIGHTS.	Use	both	types	of	INNER	JOIN	techniques.	When	that’s
completed,	use	the	queries	to	determine	the	average	flight	duration	per	city	during
the	month	of	May,	2013.

5.	Write	a	few	queries	with	join	operations	on	your	own.

Hour	14.	Using	Subqueries	to	Define	Unknown	Data

What	You’ll	Learn	in	This	Hour:

	Definition	of	a	subquery

	The	justifications	of	using	subqueries

	Examples	of	subqueries	in	regular	database	queries

	Using	subqueries	with	data	manipulation	commands

	Using	correlated	subqueries	to	make	subqueries	specific

In	this	hour,	you	are	introduced	to	the	concept	of	subqueries.	Subqueries	are	a	means	by
which	you	can	perform	additional	queries	of	information	from	within	the	same	SQL
statement.	Using	subqueries	enables	you	to	easily	preform	complex	queries	that	may	rely
on	complex	subsets	of	data	in	your	database.

What	Is	a	Subquery?
A	subquery,	also	known	as	a	nested	query,	is	a	query	embedded	within	the	WHERE	clause
of	another	query	to	further	restrict	data	returned	by	the	query.	A	subquery	returns	data	that
is	used	in	the	main	query	as	a	condition	to	further	restrict	the	data	to	be	retrieved.
Subqueries	are	employed	with	the	SELECT,	INSERT,	UPDATE,	and	DELETE	statements.

You	can	use	a	subquery	in	some	cases	in	place	of	a	join	operation	by	indirectly	linking
data	between	the	tables	based	on	one	or	more	conditions.	When	you	have	a	subquery	in	a
query,	the	subquery	is	resolved	first,	and	then	the	main	query	is	resolved	according	to	the
condition(s)	resolved	by	the	subquery.	The	results	of	the	subquery	process	expressions	in
the	WHERE	clause	of	the	main	query.	You	can	use	the	subquery	either	in	the	WHERE	clause
or	the	HAVING	clause	of	the	main	query.	You	can	use	logical	and	relational	operators,
such	as	=,	>,	<,	<>,!=,	IN,	NOT	IN,	AND,	OR,	and	so	on	within	the	subquery	as	well	as	to
evaluate	a	subquery	in	the	WHERE	or	HAVING	clause.

Subqueries	must	follow	a	few	rules:

	Subqueries	must	be	enclosed	within	parentheses.

	A	subquery	can	have	only	one	column	in	the	SELECT	clause,	unless	multiple
columns	are	in	the	main	query	for	the	subquery	to	compare	its	selected	columns.

	You	cannot	use	an	ORDER	BY	clause	in	a	subquery;	although	the	main	query	can
use	an	ORDER	BY	clause.	You	can	use	the	GROUP	BY	clause	to	perform	the	same
function	as	the	ORDER	BY	clause	in	a	subquery.

	You	can	use	only	subqueries	that	return	more	than	one	row	with	multiple	value
operators,	such	as	the	IN	operator.

	The	SELECT	list	cannot	include	references	to	values	that	evaluate	to	a	BLOB,
ARRAY,	CLOB,	or	NCLOB.

	You	cannot	immediately	enclose	a	subquery	in	a	SET	function.

	You	cannot	use	the	BETWEEN	operator	with	a	subquery;	however,	you	can	use	the
BETWEEN	operator	within	the	subquery.

Note:	The	Rules	of	Using	Subqueries

The	same	rules	that	apply	to	standard	queries	also	apply	to	subqueries.	You	can	use
join	operations,	functions,	conversions,	and	other	options	within	a	subquery.

The	basic	syntax	for	a	subquery	follows:
Click	here	to	view	code	image

SELECT	COLUMN_NAME
FROM	TABLE
WHERE	COLUMN_NAME	=	(SELECT	COLUMN_NAME
																					FROM	TABLE
																					WHERE	CONDITIONS);

The	following	examples	show	how	you	can	and	cannot	use	the	BETWEEN	operator	with	a
subquery.	Here	is	an	example	of	a	correct	use	of	BETWEEN	in	the	subquery:
Click	here	to	view	code	image

SELECT	COLUMN_NAME
FROM	TABLE_A
WHERE	COLUMN_NAME	OPERATOR	(SELECT	COLUMN_NAME
																												FROM	TABLE_B)
																												WHERE	VALUE	BETWEEN	VALUE)

You	cannot	use	BETWEEN	as	an	operator	outside	the	subquery.	The	following	is	an
example	of	an	illegal	use	of	BETWEEN	with	a	subquery:
Click	here	to	view	code	image

SELECT	COLUMN_NAME
FROM	TABLE_A
WHERE	COLUMN_NAME	BETWEEN	VALUE	AND	(SELECT	COLUMN_NAME
																																					FROM	TABLE_B)

Subqueries	with	the	SELECT	Statement
Subqueries	are	most	frequently	used	with	the	SELECT	statement;	although	you	can	use
them	within	a	data	manipulation	statement	as	well.	The	subquery	when	employed	with	the
SELECT	statement	retrieves	data	for	the	main	query	to	use.

The	basic	syntax	follows:
Click	here	to	view	code	image

SELECT	COLUMN_NAME	[,	COLUMN_NAME]
FROM	TABLE1	[,	TABLE2]
WHERE	COLUMN_NAME	OPERATOR
																		(SELECT	COLUMN_NAME	[,	COLUMN_NAME]
																			FROM	TABLE1	[,	TABLE2]
																		[WHERE])

Following	is	an	example:

Click	here	to	view	code	image
SELECT	E.EMPLOYEEID,E.LASTNAME,
							A.AIRPORTNAME,	E.SALARY
FROM	EMPLOYEES	E
					INNER	JOIN		AIRPORTS	A
ON	E.AIRPORTID	=	A.AIRPORTID
WHERE	E.SALARY=
												(SELECT	SALARY
														FROM	EMPLOYEES
														WHERE	EMPLOYEEID=3908);

The	preceding	SQL	statement	returns	the	employee	identification,	last	name,	and	salary
for	all	employees	who	have	a	salary	equal	to	that	of	the	employee	with	the	identification
3908.	In	this	case,	you	do	not	necessarily	know	(or	care)	what	the	exact	pay	rate	is	for
this	particular	employee;	you	care	only	about	the	pay	rate	for	the	purpose	of	getting	a	list
of	employees	who	bring	home	pay	equal	to	the	employee	specified	in	the	subquery.

Tip:	Using	Subqueries	for	Unknown	Values

Subqueries	are	frequently	used	to	place	conditions	on	a	query	when	the	exact
conditions	are	unknown.	The	salary	for	3908	in	the	previous	example	was
unknown,	but	the	subquery	was	designed	to	do	the	footwork	for	you.

The	next	query	selects	the	pay	rate	for	a	particular	employee:
Click	here	to	view	code	image

SELECT	SALARY

FROM	EMPLOYEES

WHERE	EMPLOYEEID=3908;

SALARY
––––––––––
71000.00

(1	row(s)	affected)

The	previous	query	is	then	used	as	a	subquery	in	the	WHERE	clause	of	the	following
query:
Click	here	to	view	code	image

SELECT	E.EMPLOYEEID,E.LASTNAME,

							A.AIRPORTNAME,	E.SALARY
FROM	EMPLOYEES	E

					INNER	JOIN		AIRPORTS	A
ON	E.AIRPORTID	=	A.AIRPORTID

WHERE	E.SALARY=

												(SELECT	SALARY
														FROM	EMPLOYEES
														WHERE	EMPLOYEEID=3908);

EMPLOYEEID		LASTNAME																							AIRPORTNAME																				SALARY
–––—	––––––––––	––––––––––	–––
407									Graaf																										Greater
Wilmington													71000.00
438									Bueckers																							Griffiss
AFB																			71000.00
581									Mazon																										Hidden
Falls																			71000.00

912									Glory																										Kern
County																				71000.00
934									Pion																											King	Of
Prussia																71000.00
991									Mateen																									Kuparuk																								71000.00
1075								Otukolo																								Lawrence	J
Timmerman											71000.00
1138								Yarrito																								Linden																									71000.00
1231								Saxby																										Mackall
AAF																				71000.00
2216								Zahri																										Neosho																									71000.00
2239								Ylonen																									New	Haven
Rail																	71000.00
2406								Almos																										Orange	County	Steel	Salvage	He
71000.00
2470								Eblen																										Palm	Beach	County
Park									71000.00
2863								Farrelly																							Rensselaer																					71000.00
2889								Lebeck																									Richards-
Gebaur																71000.00
3628								Cocco																										Butler	County	-	Kenny	Scholter
71000.00
3908								Withers																								City	Of	Industry
H/P											71000.00
4112								Deltufo																								Dade
Collier																			71000.00
4575								Weisenfluh																					Sawyer
International											71000.00
4906								Mccollum																							State																										71000.00
5110								Sammis																									Tradewind																						71000.00
5572								Dentremont																					Yellowstone																				71000.00

(22	row(s)	affected)

The	result	of	the	subquery	is	71000	(shown	in	the	last	example),	so	the	last	condition	of
the	WHERE	clause	is	evaluated	as

AND	EP.PAY_RATE	=	71000

You	did	not	know	the	value	of	the	pay	rate	for	the	given	individual	when	you	executed	the
query.	However,	the	main	query	compared	each	individual’s	pay	rate	to	the	subquery
results.

Subqueries	with	the	INSERT	Statement
You	can	also	use	subqueries	with	Data	Manipulation	Language	(DML)	statements.	The
INSERT	statement	is	the	first	instance	you	examine.	It	uses	the	data	returned	from	the
subquery	to	insert	into	another	table.	You	can	modify	the	selected	data	in	the	subquery
with	any	of	the	character,	date,	or	number	functions.

Note:	Always	Remember	to	COMMIT	Your	DML

Remember	to	use	the	COMMIT	and	ROLLBACK	commands	when	using	DML
commands	such	as	the	INSERT	statement.

The	basic	syntax	follows:
Click	here	to	view	code	image

INSERT	INTO	TABLE_NAME	[(COLUMN1	[,	COLUMN2])]
SELECT	[*|COLUMN1	[,	COLUMN2]
FROM	TABLE1	[,	TABLE2]
[WHERE	VALUE	OPERATOR]

Following	is	an	example	of	the	INSERT	statement	with	a	subquery:
Click	here	to	view	code	image

INSERT	INTO	RICH_EMPLOYEES

SELECT	E.EMPLOYEEID,E.LASTNAME,E.FIRSTNAME,

							A.AIRPORTNAME,	E.SALARY
FROM	EMPLOYEES	E

					INNER	JOIN		AIRPORTS	A
ON	E.AIRPORTID	=	A.AIRPORTID

WHERE	E.SALARY>

												(SELECT	SALARY
														FROM	EMPLOYEES
														WHERE	EMPLOYEEID=3908);

(89	row(s)	affected)

This	INSERT	statement	inserts	the	EMPLOYEEID,	LASTNAME,	FIRSTNAME,	and
SALARY	into	a	table	called	RICH_EMPLOYEES	for	all	records	of	employees	who	have	a
pay	rate	greater	than	the	pay	rate	of	the	employee	with	identification	3908.

Subqueries	with	the	UPDATE	Statement
You	can	use	subqueries	with	the	UPDATE	statement	to	update	single	or	multiple	columns
in	a	table.	The	basic	syntax	is	as	follows:
Click	here	to	view	code	image

UPDATE	TABLE
SET	COLUMN_NAME	[,	COLUMN_NAME)]	=
				(SELECT]COLUMN_NAME	[,	COLUMN_NAME)]
				FROM	TABLE
				[WHERE]

Examples	showing	the	use	of	the	UPDATE	statement	with	a	subquery	follow.	The	first
query	returns	the	employee	identification	of	all	employees	who	reside	in	Indianapolis.	You
can	see	that	two	individuals	meet	this	criterion.
Click	here	to	view	code	image

SELECT	EMPLOYEEID

FROM	EMPLOYEES

WHERE	CITY	=	‘Indianapolis	IN’;

EMPLOYEEID
–––—
681
682

(2	row(s)	affected)

The	previous	query	is	used	as	the	subquery	in	the	following	UPDATE	statement;	it	proves
how	many	employee	identifications	are	returned	by	the	subquery:
Click	here	to	view	code	image

UPDATE	EMPLOYEES

SET	PAYRATE	=	PAYRATE	*	1.1

WHERE	EMPLOYEEID	IN	(SELECT	EMPLOYEEID

																	FROM	EMPLOYEES
																	WHERE	CITY	=	‘Indianapolis	IN’);

(2	row(s)	affected)

As	expected,	two	rows	are	updated.	One	important	thing	to	notice	is	that	unlike	the
example	in	the	first	section,	this	subquery	returns	multiple	rows	of	data.	Because	you
expect	multiple	rows	to	be	returned,	you	use	the	IN	operator	instead	of	the	equal	sign.
Remember	that	IN	compares	an	expression	to	values	in	a	list.	If	you	had	used	the	equal
sign,	an	error	would	have	been	returned.

Subqueries	with	the	DELETE	Statement
You	can	also	use	subqueries	with	the	DELETE	statement.	The	basic	syntax	follows:
Click	here	to	view	code	image

DELETE	FROM	TABLE_NAME
[WHERE	OPERATOR	[VALUE]
(SELECT	COLUMN_NAME
FROM	TABLE_NAME)
[WHERE)]

In	the	following	example,	you	delete	the	Heather	Vanzee’s	record	from
RICH_EMPLOYEES.	You	do	not	know	Heather’s	employee	identification	number,	but
you	can	use	a	subquery	to	get	her	identification	number	from	EMPLOYEES,	which
contains	the	FIRSTNAME	and	LASTNAME	columns.
Click	here	to	view	code	image

DELETE	FROM	RICH_EMPLOYEES

WHERE	EMPLOYEEID	IN	(SELECT	EMPLOYEEID

																FROM	EMPLOYEES
																WHERE	LASTNAME	=	‘Vanzee’
																		AND	FIRSTNAME	=	‘Heather’);

1	row	deleted.

What	is	interesting	is	that	only	one	row	was	deleted	even	though	your	subquery	that
searches	EMPLOYEES	by	first	and	last	name	returns	two	rows.	Remember,	the	subquery
gets	only	a	set	of	data	and	then	passes	it	to	be	used	by	the	main	query.	Because	the
RICH_EMPLOYEES	table	had	only	one	of	the	two	entries,	then	only	that	single	entry	is
removed.

Embedded	Subqueries
You	can	embed	a	subquery	within	another	subquery,	just	as	you	can	embed	the	subquery
within	a	regular	query.	When	a	subquery	is	used,	that	subquery	is	resolved	before	the	main
query.	Likewise,	the	lowest	level	subquery	is	resolved	first	in	embedded	or	nested
subqueries,	working	out	to	the	main	query.

Note:	Check	the	Limits	of	Your	System

You	must	check	your	particular	implementation	for	limits	on	the	number	of
subqueries,	if	any,	that	you	can	use	in	a	single	statement.	It	might	differ	between
vendors.

The	basic	syntax	for	embedded	subqueries	follows:
Click	here	to	view	code	image

SELECT	COLUMN_NAME	[,	COLUMN_NAME]
FROM	TABLE1	[,	TABLE2]
WHERE	COLUMN_NAME	OPERATOR	(SELECT	COLUMN_NAME
																												FROM	TABLE
																												WHERE	COLUMN_NAME	OPERATOR
																																				(SELECT	COLUMN_NAME
																																				FROM	TABLE
																																				[WHERE	COLUMN_NAME	OPERATOR	VALUE]))

The	following	example	uses	two	subqueries,	one	embedded	within	the	other.	You	want	to
determine	what	airports	have	employees	working	at	them	that	have	more	than	the	average
salary	of	the	rich	employees.
Click	here	to	view	code	image

SELECT	AIRPORTNAME,CITY

FROM	AIRPORTS

WHERE	AIRPORTID	IN	(SELECT	AIRPORTID

																				FROM	EMPLOYEES	E
																				WHERE	E.SALARY	>	(SELECT	AVG(SALARY)
																																																						FROM
																																																						RICH_EMPLOYEES));
AIRPORTNAME																				CITY
––––––––––	––––––––––
Holy	Cross																					Holy	Cross
Huntsville	International	-	Car	Huntsville	AL
Marin	County																			Sausalito	CA
Mountain	Home																		Mountain	Home
Mt	Pocono																						Mt	Pocono
Municipal																						Macomb
Municipal																						Sumter
Municipal																						Troy
North	Bend																					North	Bend
North	Shore																				Umnak	Island
Onion	Bay																						Onion	Bay
Ontario	International										Ontario
Parker	County																		Weatherford
Pecos	County																			Fort	Stockton
Pedro	Bay																						Pedro	Bay
Pike	County																				Mccomb
Preston-Glenn	Field												Lynchburg
Princeton
Atqasuk																								Atqasuk
Berz-Macomb																				Utica
Beverly	Municiple	Airport						Beverly
Blythe																									Blythe
Cabin	Creek																				Cabin	Creek
Chan	Gurney																				Yankton
Cortland																							Cortland
Culberson	County															Van	Horn

Dobbins	Afb																				Marietta
Downtown																							Ardmore
Salina																									Salina
Sioux	Gateway																		Sioux	City
Skagit	Regional																Mount	Vernon
Telfair-Wheeler																Mc	Rae
Wash.	County	Regional										Hagerstown
Yampa	Valley																			Hayden

(34	row(s)	affected)

Thirty-four	rows	that	meet	the	criteria	of	both	subqueries	were	selected.

The	following	two	examples	show	the	results	of	each	of	the	subqueries	to	aid	your
understanding	of	how	the	main	query	was	resolved:
Click	here	to	view	code	image

SELECT	AVG(SALARY)	FROM	RICH_EMPLOYEES;

––––––––––
73125.000000

(1	row(s)	affected)

SELECT	AIRPORTID

							FROM	EMPLOYEES	E
							WHERE	E.SALARY	>73125.00;

AIRPORTID
–––—
1446
1467
1731
1861
1865
1981
2037
2040
2132
2140
2173
2174
2214
2227
2228
2252
2313
2314
3139
3203
3206
3240
3310
3369
3460
3484
3539
3550
3645
3721
3725
3853

3971
4059

(34	row(s)	affected)

In	essence,	the	main	query,	after	the	substitution	of	the	second	subquery,	is	evaluated	as
shown	in	the	following	example:
Click	here	to	view	code	image

SELECT	AIRPORTNAME,CITY

FROM	AIRPORTS

WHERE	AIRPORTID	IN	(SELECT	AIRPORTID

																				FROM	EMPLOYEES	E
																				WHERE	E.SALARY	>	73125.00);

The	following	shows	how	the	main	query	is	evaluated	after	the	substitution	of	the	first
subquery:
Click	here	to	view	code	image

SELECT	AIRPORTNAME,	CITY

FROM	AIRPORTS

WHERE	AIRPORTID	IN	(1446,1467,1731,1861,1865,1981,2037,2040,2132,2140,2173,
																				2174,2214,2227,2228,2252,2313,2314,3139,3203,3206,3240,
																				3310,3369,3460,3484,3539,3550,3645,3721,3725,3853,3971,
																				4059);

The	following	is	the	final	result:
Click	here	to	view	code	image

AIRPORTNAME																				CITY
––––––––––	––––––––––
Holy	Cross																					Holy	Cross
Huntsville	International	-	Car	Huntsville	AL
Marin	County																			Sausalito	CA
Mountain	Home																		Mountain	Home
Mt	Pocono																						Mt	Pocono
Municipal																						Macomb
Municipal																						Sumter
Municipal																						Troy
North	Bend																					North	Bend
North	Shore																				Umnak	Island
Onion	Bay																						Onion	Bay
Ontario	International										Ontario
Parker	County																		Weatherford
Pecos	County																			Fort	Stockton
Pedro	Bay																						Pedro	Bay
Pike	County																				Mccomb
Preston-Glenn	Field												Lynchburg
Princeton																						Princeton
Atqasuk																								Atqasuk
Berz-Macomb																				Utica
Beverly	Municiple	Airport						Beverly
Blythe																									Blythe
Cabin	Creek																				Cabin	Creek
Chan	Gurney																				Yankton
Cortland																							Cortland
Culberson	County															Van	Horn
Dobbins	Afb																				Marietta
Downtown																							Ardmore
Salina																									Salina
Sioux	Gateway																		Sioux	City

Skagit	Regional																Mount	Vernon
Telfair-Wheeler																Mc	Rae
Wash.	County	Regional										Hagerstown
Yampa	Valley																			Hayden

(34	row(s)	affected)

Caution:	Multiple	Subqueries	Can	Cause	Problems

The	use	of	multiple	subqueries	results	in	slower	response	time	and	might	result	in
reduced	accuracy	of	the	results	due	to	possible	mistakes	in	the	statement	coding.

Correlated	Subqueries
Correlated	subqueries	are	common	in	many	SQL	implementations.	The	concept	of
correlated	subqueries	is	discussed	as	an	ANSI-standard	SQL	topic	and	is	covered	briefly
in	this	hour.	A	correlated	subquery	is	a	subquery	that	is	dependent	upon	information	in	the
main	query.	This	means	that	tables	in	a	subquery	can	be	related	to	tables	in	the	main
query.

In	the	following	example,	the	table	join	between	AIRCRAFTFLEET	and	FLIGHTS	in	the
subquery	is	dependent	on	the	alias	for	AIRCRAFTFLEET	(AF)	in	the	main	query.	This
query	returns	the	aircraft	code	and	designator	of	all	aircraft	that	have	flown	more	than
120,000	minutes.	This	might	be	important	to	discover	for	a	maintenance	requirement
involving	older	aircraft.
Click	here	to	view	code	image

SELECT	AF.AircraftCode,AF.AircraftDesignator
FROM	AircraftFleet	AF
WHERE	120000	<=
			(SELECT	SUM(F.FlightDuration)	FROM		Flights	F
				WHERE	AF.AircraftFleetID=F.AircraftFleetID
);

AircraftCode	AircraftDesignator
––––	––––––
E12										MMEK-270
E12										BIOA-249
F28										AGTX-691
F28										LXUT-830
EM2										IEQF-918
BEK										SKQU-790
M11										CIVG-217

(7	row(s)	affected)

You	can	extract	and	slightly	modify	the	subquery	from	the	previous	statement	as	follows
to	show	the	total	minutes	flown	for	each	aircraft,	allowing	the	previous	results	to	be
verified:
Click	here	to	view	code	image

SELECT	AF.AircraftCode,AF.AircraftDesignator,SUM(F.FlightDuration)	as
MinutesFlown
FROM	AircraftFleet	AF
INNER	JOIN	Flights	F	ON	AF.AircraftFleetID=F.AircraftFleetID
GROUP	BY	AF.AircraftCode,AF.AircraftDesignator

HAVING	SUM(F.FlightDuration)>120000;

AircraftCode	AircraftDesignator	MinutesFlown
––––	––––––	––––
F28										AGTX-691											138231
E12										BIOA-249											122138
M11										CIVG-217											123374
EM2										IEQF-918											129297
F28										LXUT-830											127180
E12										MMEK-270											133764
BEK										SKQU-790											149810

(7	row(s)	affected)

The	GROUP	BY	clause	in	this	example	is	required	because	another	column	is	selected
with	the	aggregate	function	SUM.	This	gives	you	a	sum	for	each	aircraft.	In	the	original
subquery,	a	GROUP	BY	clause	is	not	required	because	SUM	achieves	a	total	for	the	entire
query,	which	is	run	against	the	record	for	each	aircraft	in	the	fleet.

Note:	Proper	Use	of	Correlated	Subqueries

For	a	correlated	subquery,	you	must	reference	the	table	in	the	main	query	before
you	can	resolve	the	subquery.

Subquery	Performance
Subqueries	do	have	performance	implications	when	used	within	a	query.	You	must
consider	those	implications	prior	to	implementing	them	in	a	production	environment.
Consider	that	a	subquery	must	be	evaluated	prior	to	the	main	part	of	the	query,	so	the	time
that	it	takes	to	execute	the	subquery	has	a	direct	effect	on	the	time	it	takes	for	the	main
query	to	execute.	Now	look	at	the	previous	example:
Click	here	to	view	code	image

SELECT	AirportID,	AirportName
FROM	Airports
WHERE	AirportID	IN	(SELECT	AF.HomeAirportID
																				FROM	AircraftFleet	AF
																				WHERE	120000	<=	(SELECT	SUM(F.FlightDuration)
																																					FROM	Flights	F
																																					WHERE
AF.AircraftFleetID=F.AircraftFleetID
));

Imagine	what	would	happen	if	AIRCRAFTFLEET	contained	a	couple	thousand	aircraft
and	FLIGHTS	contained	a	few	million	lines	of	flight	data	over	the	last	several	years.	The
resulting	effect	of	having	to	do	a	SUM	across	the	FLIGHTS	table	and	then	join	it	with
AIRCRAFTFLEET	could	slow	the	query	down	quite	considerably.	So	always	remember	to
evaluate	the	effect	that	using	a	subquery	has	on	performance	when	deciding	on	a	course	of
action	to	take	for	getting	information	out	of	the	database.

Summary
By	simple	definition	and	general	concept,	a	subquery	is	a	query	that	is	performed	within
another	query	to	place	further	conditions	on	a	query.	You	can	use	a	subquery	in	a	SQL
statement’s	WHERE	clause	or	HAVING	clause.	Queries	are	typically	used	within	other
queries	(Data	Query	Language),	but	you	can	also	use	them	in	the	resolution	of	DML
statements	such	as	INSERT,	UPDATE,	and	DELETE.	All	basic	rules	for	DML	apply	when
using	subqueries	with	DML	commands.

The	subquery’s	syntax	is	virtually	the	same	as	that	of	a	standalone	query,	with	a	few	minor
restrictions.	One	of	these	restrictions	is	that	you	cannot	use	the	ORDER	BY	clause	within
a	subquery;	you	can	use	a	GROUP	BY	clause,	however,	which	renders	virtually	the	same
effect.	Subqueries	are	used	to	place	conditions	that	are	not	necessarily	known	for	a	query,
providing	more	power	and	flexibility	with	SQL.

Q&A
Q.	Is	there	a	limit	on	the	number	of	embedded	subqueries	that	can	be	used	in	a
single	query?

A.	Limitations	such	as	the	number	of	embedded	subqueries	allowed	and	the	number	of
tables	joined	in	a	query	are	specific	to	each	implementation.	Some	implementations
might	not	have	limits;	although	the	use	of	too	many	embedded	subqueries	could
drastically	hinder	SQL	statement	performance.	Most	limitations	are	affected	by	the
actual	hardware,	CPU	speed,	and	system	memory	available;	however,	there	are	many
other	considerations.

Q.	It	seems	that	debugging	a	query	with	subqueries	can	prove	to	be	confusing,
especially	with	embedded	subqueries.	What	is	the	best	way	to	debug	a	query
with	subqueries?

A.	The	best	way	to	debug	a	query	with	subqueries	is	to	evaluate	the	query	in	sections.
First,	evaluate	the	lowest-level	subquery,	and	then	work	your	way	to	the	main	query
(the	same	way	the	database	evaluates	the	query).	When	you	evaluate	each	subquery
individually,	you	can	substitute	the	returned	values	for	each	subquery	to	check	your
main	query’s	logic.	An	error	with	a	subquery	often	results	from	the	use	of	the
operator	that	evaluates	the	subquery,	such	as	(=),	IN,	>,	<,	and	so	on.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	What	is	the	function	of	a	subquery	when	used	with	a	SELECT	statement?

2.	Can	you	update	more	than	one	column	when	using	the	UPDATE	statement	with	a
subquery?

3.	Do	the	following	have	the	correct	syntax?	If	not,	what	is	the	correct	syntax?

a.
Click	here	to	view	code	image

SELECT	PASSENGERID,	FIRSTNAME,LASTNAME,COUNTRYCODE
								FROM	PASSENGERS
								WHERE	PASSENGERID	IN
																							(SELECT	PASSENGERID
																															FROM	TRIPS
																															WHERE	TRIPID	BETWEEN	2390	AND	2400);

b.
Click	here	to	view	code	image

SELECT	EMPLOYEEID,	SALARY
							FROM	EMPLOYEES
							WHERE	SALARY	BETWEEN	‘20000’
																				AND	(SELECT	SALARY
																									FROM	EMPLOYEES
																									WHERE	SALARY	=	‘40000’);

c.
Click	here	to	view	code	image

UPDATE	PASSENGERS
			SET	COUNTRYCODE	=	‘NZ’
			WHERE	PASSENGERID	=
																		(SELECT	PASSENGERID
																			FROM	TRIPS
																			WHERE	TRIPID	=	2405);

4.	What	would	happen	if	you	ran	the	following	statement?
Click	here	to	view	code	image

DELETE	FROM	EMPLOYEES
WHERE	EMPLOYEEID	IN
														(SELECT	EMPLOYEEID
														FROM	RICH_EMPLOYEES);

Exercises
1.	Write	the	SQL	code	for	the	requested	subqueries,	and	compare	your	results	to	ours.

2.	Using	a	subquery,	write	a	SQL	statement	to	update	the	PASSENGERS	table.	Find
the	passenger	with	the	TripID	3120,	and	change	the	passenger’s	name	to	RYAN
STEPHENS.

3.	Using	a	subquery,	write	a	query	that	returns	the	counts	of	passengers	by	country	that
are	leaving	on	July,	4,	2013.

4.	Using	a	subquery,	write	a	query	that	lists	all	passenger	information	for	those

passengers	that	are	taking	trips	that	are	less	than	21	days	from	beginning	to	end.

Hour	15.	Combining	Multiple	Queries	into	One

What	You’ll	Learn	in	This	Hour:

	An	overview	of	the	operators	that	combine	queries

	When	to	use	the	commands	to	combine	queries

	Using	the	GROUP	BY	clause	with	the	compound	operators

	Using	the	ORDER	BY	clause	with	the	compound	operators

	How	to	retrieve	accurate	data

In	this	hour,	you	learn	how	to	combine	SQL	queries	using	the	UNION,	UNION	ALL,
INTERSECT,	and	EXCEPT	operators.	Because	SQL	is	meant	to	work	on	data	in	sets,	you
need	to	combine	and	compare	various	sets	of	query	data.	The	UNION,	INSERSECT,	and
EXCEPT	operators	enable	you	to	work	with	different	SELECT	statements	and	combine
and	compare	the	results	in	different	ways.	Again,	you	must	check	your	particular
implementation	for	any	variations	in	the	use	of	these	operators.

Single	Queries	Versus	Compound	Queries
A	single	query	uses	one	SELECT	statement,	whereas	a	compound	query	includes	two	or
more	SELECT	statements.

You	form	compound	queries	using	some	type	of	operator	to	join	the	two	queries.	The
UNION	operator	in	the	following	examples	joins	two	queries.

A	single	SQL	statement	could	be	written	as	follows:
Click	here	to	view	code	image

SELECT	EmployeeID,	Salary,	PayRate
FROM	Employees
WHERE	Salary	IS	NOT	NULL	OR
PayRate	IS	NOT	NULL;

This	is	the	same	statement	using	the	UNION	operator:
SELECT	EmployeeID,	Salary
FROM	Employees
WHERE	Salary	IS	NOT	NULL
UNION
SELECT	EmployeeID,	PayRate
FROM	Employees
WHERE	PayRate	IS	NOT	NULL;

The	previous	statements	return	pay	information	for	all	employees	who	are	paid	either
hourly	or	on	a	salary.

Compound	operators	combine	and	restrict	the	results	of	two	SELECT	statements.	You	can
use	these	operators	to	return	or	suppress	the	output	of	duplicate	records.	Compound
operators	can	bring	together	similar	data	that	is	stored	in	different	fields.

Note:	How	UNION	Works

If	you	executed	the	second	query,	the	output	has	two	column	headings:
EmployeeID	and	Salary.	Each	individual’s	pay	rate	is	listed	under	the	Salary
column.	When	using	the	UNION	operator,	column	headings	are	determined	by
column	names	or	column	aliases	used	in	the	first	SELECT	statement.

Compound	queries	enable	you	to	combine	the	results	of	more	than	one	query	to	return	a
single	set	of	data.	This	type	of	query	is	often	simpler	to	write	than	a	single	query	with
complex	conditions.	These	queries	also	allow	for	more	flexibility	regarding	the	never-
ending	task	of	data	retrieval.

Compound	Query	Operators
Compound	query	operators	vary	among	database	vendors.	The	American	National
Standards	Institute	(ANSI)	standard	includes	the	UNION,	UNION	ALL,	EXCEPT,	and
INTERSECT	operators,	all	of	which	are	discussed	in	the	following	sections.

The	UNION	Operator
The	UNION	operator	combines	the	results	of	two	or	more	SELECT	statements	without
returning	duplicate	rows.	In	other	words,	if	a	row	of	output	exists	in	the	results	of	one
query,	the	same	row	is	not	returned,	even	though	it	exists	in	the	second	query.	To	use	the
UNION	operator,	each	SELECT	statement	must	have	the	same	number	of	columns
selected,	the	same	number	of	column	expressions,	the	same	data	type,	and	the	same	order
—but	they	do	not	have	to	be	the	same	length.

The	syntax	follows:
Click	here	to	view	code	image

SELECT	COLUMN1	[,	COLUMN2]
FROM	TABLE1	[,	TABLE2]
[WHERE]
UNION
SELECT	COLUMN1	[,	COLUMN2]
FROM	TABLE1	[,	TABLE2]
[WHERE]

Look	at	the	following	example:
Click	here	to	view	code	image

SELECT	EmployeeID	FROM	Employees
UNION
SELECT	EmployeeID	FROM	Employees;

Those	employee	IDs	appear	only	once	in	the	results	even	though	we	selected	from	the
Employees	table	twice.

This	hour’s	examples	begin	with	a	simple	SELECT	statement	from	two	tables:
Click	here	to	view	code	image

SELECT	DISTINCT	Position	FROM	Employees;

Position
––––––––––
Ground	Operations
Security	Officer
Ticket	Agent
Baggage	Handler

(4	row(s)	affected)

SELECT	Position	FROM	EmployeePositions;

Position
––––––––––
Baggage	Handler
Ground	Operations
Security	Officer
Ticket	Agent

(4	row(s)	affected)

Now,	combine	the	same	two	queries	with	the	UNION	operator,	making	a	compound	query:
Click	here	to	view	code	image

SELECT	DISTINCT	Position	FROM	Employees

UNION

SELECT	Position	FROM	EmployeePositions;

Position
––––––––––
Baggage	Handler
Ground	Operations
Security	Officer
Ticket	Agent

(4	row(s)	affected)

In	the	first	query,	four	rows	of	data	were	returned,	and	four	rows	of	data	were	returned
from	the	second	query.	Four	rows	of	data	are	returned	when	the	UNION	operator	combines
the	two	queries.	Only	four	rows	are	returned	because	duplicate	rows	of	data	are	not
returned	when	using	the	UNION	operator.

The	following	code	shows	an	example	of	combining	two	unrelated	queries	with	the
UNION	operator:
Click	here	to	view	code	image

SELECT	Position	FROM	EmployeePositions

UNION

SELECT	Country	FROM	Countries	WHERE	Country	LIKE	‘Z%’;

Position
––––––––––
Baggage	Handler
Ground	Operations
Security	Officer
Ticket	Agent
Zambia
Zimbabwe

(6	row(s)	affected)

The	Position	and	Country	values	are	listed	together,	and	the	column	heading	is	taken
from	the	column	name	in	the	first	query.

The	UNION	ALL	Operator
You	use	the	UNION	ALL	operator	to	combine	the	results	of	two	SELECT	statements,
including	duplicate	rows.	The	same	rules	that	apply	to	UNION	apply	to	the	UNION	ALL
operator.	The	UNION	and	UNION	ALL	operators	are	the	same;	although	one	returns
duplicate	rows	of	data	where	the	other	does	not.

The	syntax	follows:
Click	here	to	view	code	image

SELECT	COLUMN1	[,	COLUMN2]
FROM	TABLE1	[,	TABLE2]
[WHERE]
UNION	ALL
SELECT	COLUMN1	[,	COLUMN2]
FROM	TABLE1	[,	TABLE2]
[WHERE]

The	following	SQL	statement	returns	all	employee	IDs	from	both	tables	and	shows
duplicates:
Click	here	to	view	code	image

SELECT	DISTINCT	Position	FROM	Employees

UNION	ALL

SELECT	Position	FROM	EmployeePositions;

The	following	is	the	same	compound	query	in	the	previous	section	with	the	UNION	ALL
operator:
Click	here	to	view	code	image

SELECT	DISTINCT	Position	FROM	Employees

UNION	ALL

SELECT	Position	FROM	EmployeePositions;

Position
––––––––––
Ground	Operations
Security	Officer
Ticket	Agent
Baggage	Handler
Baggage	Handler
Ground	Operations
Security	Officer
Ticket	Agent

(8	row(s)	affected)

Notice	that	there	were	8	rows	returned	in	this	query	(4+4)	because	duplicate	records	are
retrieved	with	the	UNION	ALL	operator.

The	INTERSECT	Operator
You	use	the	INTERSECT	operator	to	combine	two	SELECT	statements,	but	it	returns	only
rows	from	the	first	SELECT	statement	that	are	identical	to	rows	in	the	second	SELECT
statement.	The	same	rules	apply	when	using	the	INTERSECT	operator	as	when	you	used
the	UNION	operator.

The	syntax	follows:
Click	here	to	view	code	image

SELECT	COLUMN1	[,	COLUMN2]
FROM	TABLE1	[,	TABLE2]
[WHERE]
INTERSECT
SELECT	COLUMN1	[,	COLUMN2]
FROM	TABLE1	[,	TABLE2]
[WHERE]

The	following	SQL	statement	returns	the	customer	identification	for	those	customers	who
have	placed	an	order:
Click	here	to	view	code	image

SELECT	PassengerID	FROM	Passengers
INTERSECT
SELECT	PassengerID	FROM	Trips;

The	following	example	illustrates	the	INTERSECT	operator	using	the	two	original	queries
in	this	hour:
Click	here	to	view	code	image

SELECT	DISTINCT	Position	FROM	Employees

INTERSECT

SELECT	Position	FROM	EmployeePositions;

Position
––––––––––
Ground	Operations
Security	Officer
Ticket	Agent
Baggage	Handler

(4	row(s)	affected)

Only	4	rows	are	returned	because	only	4	rows	were	identical	between	the	output	of	the
two	single	queries.

The	EXCEPT	Operator
The	EXCEPT	operator	combines	two	SELECT	statements	and	returns	rows	from	the	first
SELECT	statement	that	are	not	returned	by	the	second	SELECT	statement.	Again,	the
same	rules	that	apply	to	the	UNION	operator	also	apply	to	the	EXCEPT	operator.	In	Oracle
the	EXCEPT	operator	is	referenced	by	using	the	term	MINUS	but	it	performs	the	same
functionality.

The	syntax	follows:
Click	here	to	view	code	image

SELECT	COLUMN1	[,	COLUMN2]
FROM	TABLE1	[,	TABLE2]
[WHERE]
EXCEPT
SELECT	COLUMN1	[,	COLUMN2]
FROM	TABLE1	[,	TABLE2]
[WHERE]

Study	the	following	example,	which	would	work	in	a	SQL	Server	implementation:
Click	here	to	view	code	image

SELECT	DISTINCT	Position	FROM	Employees

EXCEPT

SELECT	Position	FROM	EmployeePositions	WHERE	PositionID<=2;

Position
––––––––––
Security	Officer
Ticket	Agent

(2	row(s)	affected)

According	to	the	results,	two	rows	of	data	were	returned	by	the	first	query	that	were	not
returned	by	the	second	query.

The	following	example	demonstrates	the	use	of	the	MINUS	operator	as	a	replacement	for
the	EXCEPT	operator:
Click	here	to	view	code	image

SELECT	DISTINCT	Position	FROM	Employees

MINUS

SELECT	Position	FROM	EmployeePositions	WHERE	PositionID<=2;

Position
––––––––––
Security	Officer
Ticket	Agent

2	rows	selected.

Using	ORDER	BY	with	a	Compound	Query
You	can	use	the	ORDER	BY	clause	with	a	compound	query.	However,	you	can	use	the
ORDER	BY	clause	only	to	order	the	results	of	both	queries.	Therefore,	there	can	be	only
one	ORDER	BY	clause	in	a	compound	query,	even	though	the	compound	query	might
consist	of	multiple	individual	queries	or	SELECT	statements.	The	ORDER	BY	clause	must
reference	the	columns	ordered	by	an	alias	or	by	the	column	number.

The	syntax	follows:
Click	here	to	view	code	image

SELECT	COLUMN1	[,	COLUMN2]
FROM	TABLE1	[,	TABLE2]
[WHERE]
OPERATOR{UNION	|	EXCEPT	|	INTERSECT	|	UNION	ALL}
SELECT	COLUMN1	[,	COLUMN2]
FROM	TABLE1	[,	TABLE2]
[WHERE]

[ORDER	BY]

The	following	SQL	statement	returns	the	employee	ID	from	Employees	and
EMPLOYEE_MGR	tables,	but	it	does	not	show	duplicates	and	it	orders	by	EmployeeID:
Click	here	to	view	code	image

SELECT	EmployeeID	FROM	Employees
UNION
SELECT	EmployeeID	FROM	EMPLOYEE_MGR
ORDER	BY	1;

Note:	Using	Numbers	in	the	ORDER	BY	Clause

The	column	in	the	ORDER	BY	clause	is	referenced	by	the	number	1	instead	of	the
actual	column	name.

The	results	of	the	compound	query	are	sorted	by	the	first	column	of	each	query.	Sorting
compound	queries	lets	you	easily	recognize	duplicate	records.

The	following	example	shows	the	use	of	the	ORDER	BY	clause	with	a	compound	query.
You	can	use	the	column	name	in	the	ORDER	BY	clause	if	the	column	sorted	by	has	the
same	name	in	all	individual	queries	of	the	statement.
Click	here	to	view	code	image

SELECT	DISTINCT	Position	FROM	Employees

UNION

SELECT	Position	FROM	EmployeePositions

ORDER	BY	Position;

Position
––––––––––
Baggage	Handler
Ground	Operations
Security	Officer
Ticket	Agent

(4	row(s)	affected)

The	following	query	uses	a	numeric	value	in	place	of	the	actual	column	name	in	the
ORDER	BY	clause:
Click	here	to	view	code	image

SELECT	DISTINCT	Position	FROM	Employees

UNION

SELECT	Position	FROM	EmployeePositions

ORDER	BY	1;

Position
––––––––––
Baggage	Handler
Ground	Operations
Security	Officer
Ticket	Agent

(4	row(s)	affected)

Using	GROUP	BY	with	a	Compound	Query
Unlike	ORDER	BY,	you	can	use	GROUP	BY	in	each	SELECT	statement	of	a	compound
query,	but	you	also	can	use	it	following	all	individual	queries.	In	addition,	you	can	use	the
HAVING	clause	(sometimes	used	with	the	GROUP	BY	clause)	in	each	SELECT	statement
of	a	compound	statement.

The	syntax	follows:
Click	here	to	view	code	image

SELECT	COLUMN1	[,	COLUMN2]
FROM	TABLE1	[,	TABLE2]
[WHERE]
[GROUP	BY]
[HAVING]
OPERATOR	{UNION	|	EXCEPT	|	INTERSECT	|	UNION	ALL}
SELECT	COLUMN1	[,	COLUMN2]
FROM	TABLE1	[,	TABLE2]
[WHERE]
[GROUP	BY]
[HAVING]
[ORDER	BY]

In	the	following	Oracle	example,	you	select	a	literal	string	to	represent	passenger	records,
employee	records,	and	aircraft	records.	Each	query	is	simply	a	count	of	all	records	in	each
appropriate	table.	The	GROUP	BY	clause	groups	the	results	of	the	entire	report	by	the
numeric	value	1,	which	represents	the	first	column	in	each	query.
Click	here	to	view	code	image

SELECT	‘PASSENGERS’	AS	RECORDTYPE,	COUNT(*)

FROM	Passengers

UNION

SELECT	‘EMPLOYEES’	AS	RECORDTYPE,	COUNT(*)

FROM	Employees

UNION

SELECT	‘AIRCRAFT’	AS	RECORDTYPE,	COUNT(*)

FROM	AircraftFleet

GROUP	BY	1;

RECORDTYPE	COUNT(*)
–––-	–––—
PASSENGERS	135001
EMPLOYEES		5611
AIRCRAFT			350

3	rows	selected.

In	SQL	Server	because	you	use	a	literal	value	there	is	no	requirement	for	the	GROUP	BY
clause:
Click	here	to	view	code	image

SELECT	‘PASSENGERS’	AS	RECORDTYPE,	COUNT(*)

FROM	Passengers

UNION

SELECT	‘EMPLOYEES’	AS	RECORDTYPE,	COUNT(*)

FROM	Employees

UNION

SELECT	‘AIRCRAFT’	AS	RECORDTYPE,	COUNT(*)

FROM	AircraftFleet;

RECORDTYPE
–––-	–––—
PASSENGERS	135001
EMPLOYEES		5611
AIRCRAFT			350

(3	row(s)	affected)

The	following	query	is	identical	to	the	previous	query,	except	that	the	ORDER	BY	clause
is	used	as	well:
Click	here	to	view	code	image

SELECT	‘PASSENGERS’	AS	RECORDTYPE,	COUNT(*)

FROM	Passengers

UNION

SELECT	‘EMPLOYEES’	AS	RECORDTYPE,	COUNT(*)

FROM	Employees

UNION

SELECT	‘AIRCRAFT’	AS	RECORDTYPE,	COUNT(*)

FROM	AircraftFleet

ORDER	BY	2;

RECORDTYPE	COUNT(*)
–––-	–––—
AIRCRAFT			350
EMPLOYEES		5611
PASSENGERS	135001

3	rows	selected.

This	is	sorted	by	column	2,	which	was	the	count	on	each	table.	Hence,	the	final	output	is
sorted	by	the	count	from	least	to	greatest.

Retrieving	Accurate	Data
Be	cautious	when	using	the	compound	operators.	Incorrect	or	incomplete	data	might	be
returned	if	you	use	the	INTERSECT	operator	and	you	use	the	wrong	SELECT	statement
as	the	first	individual	query.	In	addition,	consider	whether	you	want	duplicate	records
when	using	the	UNION	and	UNION	ALL	operators.	What	about	EXCEPT?	Do	you	need
any	of	the	rows	that	the	second	query	did	not	return?	As	you	can	see,	the	wrong
compound	query	operator	or	the	wrong	order	of	individual	queries	in	a	compound	query
can	easily	cause	misleading	data	to	be	returned.

Summary
This	hour	introduced	you	to	compound	queries.	All	SQL	statements	previous	to	this	hour
have	consisted	of	a	single	query.	Compound	queries	allow	multiple	individual	queries	to
be	used	together	as	a	single	query	to	achieve	the	data	resultset	wanted	as	output.	The
compound	query	operators	discussed	included	UNION,	UNION	ALL,	INTERSECT,	and
EXCEPT	(MINUS).	UNION	returns	the	output	of	two	single	queries	without	displaying
duplicate	rows	of	data.	UNION	ALL	simply	displays	all	output	of	single	queries,
regardless	of	existing	duplicate	rows.	INTERSECT	returns	identical	rows	between	two
queries.	EXCEPT	(MINUS	in	Oracle)	returns	the	results	of	one	query	that	do	not	exist	in
another	query.	Compound	queries	provide	greater	flexibility	when	trying	to	satisfy	the
requirements	of	various	queries,	which,	without	the	use	of	compound	operators,	could
result	in	complex	queries.

Q&A
Q.	How	are	the	columns	referenced	in	the	GROUP	BY	clause	in	a	compound
query?

A.	The	columns	can	be	referenced	by	the	actual	column	name	or	by	the	number	of	the
column	placement	in	the	query	if	the	column	names	are	not	identical	in	the	two
queries.

Q.	I	understand	what	the	EXCEPT	operator	does,	but	would	the	outcome	change	if
I	were	to	reverse	the	SELECT	statements?

A.	Yes,	the	order	of	the	individual	queries	is	important	when	using	the	EXCEPT	or
MINUS	operator.	Remember	that	all	rows	are	returned	from	the	first	query	that	are
not	returned	by	the	second	query.	Changing	the	order	of	the	two	individual	queries	in
the	compound	query	could	definitely	affect	the	results.

Q.	Must	the	data	type	and	the	length	of	columns	in	a	compound	query	be	the	same
in	both	queries?

A.	No,	only	the	data	type	must	be	the	same.	The	length	can	differ.

Q.	What	determines	the	column	names	when	using	the	UNION	operator?

A.	The	first	query	set	determines	the	column	names	for	the	data	returned	when	using	a
UNION	operator.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	Is	the	syntax	correct	for	the	following	compound	queries?	If	not,	what	would	correct
the	syntax?	Use	the	PASSENGERS	and	TRIPS	tables.

a.
Click	here	to	view	code	image

SELECT	PASSENGERID,	BIRTHDATE,	FIRSTNAME
FROM	PASSENGERS
UNION
SELECT	PASSENGERID,	LEAVING,	RETURNING
FROM	TRIPS;

b.
Click	here	to	view	code	image

SELECT	PASSENGERID	FROM	PASSENGERS
UNION	ALL
SELECT	PASSENGERID	FROM	TRIPS
ORDER	BY	PASSENGERID;

c.
Click	here	to	view	code	image

SELECT	PASSENGERID	FROM	TRIPS
INTERSECT
SELECT	PASSENGERID	FROM	PASSENGERS
ORDER	BY	1;

2.	Match	the	correct	operator	to	the	following	statements:

Exercises
1.	Use	the	PASSENGERS	and	TRIPS	tables	to	write	a	compound	query	to	find	the
passengers	who	have	scheduled	a	trip.

2.	Write	a	compound	query	to	find	the	passengers	who	have	not	scheduled	a	trip.

3.	Write	a	query	that	uses	EXCEPT	to	list	all	the	passengers	who	have	taken	a	trip
except	those	that	originated	in	Albany.

Part	V:	SQL	Performance	Tuning

Hour	16.	Using	Indexes	to	Improve	Performance

What	You’ll	Learn	in	This	Hour:

	How	indexes	work

	How	to	create	an	index

	The	different	types	of	indexes

	When	to	use	indexes

	When	not	to	use	indexes

In	this	hour,	you	learn	how	to	improve	SQL	statement	performance	by	creating	and	using
indexes.	You	begin	with	the	CREATE	INDEX	command	and	learn	how	to	use	indexes
that	have	been	created	on	tables.

What	Is	an	Index?
Simply	put,	an	index	is	a	pointer	to	data	in	a	table.	An	index	in	a	database	is	similar	to	an
index	in	the	back	of	a	book.	For	example,	if	you	want	to	reference	all	pages	in	a	book	that
discuss	a	certain	topic,	you	first	refer	to	the	index,	which	lists	all	topics	alphabetically,	and
it	refers	you	to	one	or	more	specific	page	numbers.	An	index	in	a	database	works	the	same
way	in	that	a	query	is	pointed	to	the	exact	physical	location	of	data	in	a	table.	You	are
actually	directed	to	the	data’s	location	in	an	underlying	file	of	the	database,	but	as	far	as
you	are	concerned,	you	are	referring	to	a	table.

Which	would	be	faster,	looking	through	a	book	page	by	page	for	some	information	or
searching	the	book’s	index	and	getting	a	page	number?	Of	course,	using	the	book’s	index
is	the	most	efficient	method.	It	can	save	a	lot	of	time,	especially	if	the	book	is	large.	If	you
have	a	book	of	just	a	few	pages,	however,	it	might	be	faster	to	flip	through	the	chapters	for
the	information	than	to	flip	back	and	forth	between	the	index	and	chapters.	When	a
database	does	not	use	an	index,	it	is	performing	what	is	typically	called	a	full	table	scan,
the	same	as	flipping	through	a	book	page	by	page.	Full	table	scans	are	discussed	in	Hour
17,	“Improving	Database	Performance.”

An	index	is	typically	stored	separately	from	the	table	for	which	the	index	was	created.	An
index’s	main	purpose	is	to	improve	the	performance	of	data	retrieval.	Indexes	can	be
created	or	dropped	with	no	effect	on	the	data.	However,	after	an	index	is	dropped,
performance	of	data	retrieval	might	be	slowed.	Indexes	do	take	up	physical	space	and	can
often	grow	larger	than	the	table.	Therefore,	you	should	consider	them	when	estimating
your	database	storage	needs.

How	Do	Indexes	Work?
When	an	index	is	created,	it	records	the	location	of	values	in	a	table	that	are	associated
with	the	column	that	is	indexed.	Entries	are	added	to	the	index	when	new	data	is	added	to
the	table.	When	a	query	is	executed	against	the	database	and	a	condition	is	specified	on	a
column	in	the	WHERE	clause	that	is	indexed,	the	index	is	first	searched	for	the	values
specified	in	the	WHERE	clause.	If	the	value	is	found	in	the	index,	the	index	returns	the
exact	location	of	the	searched	data	in	the	table.	Figure	16.1	illustrates	the	functioning	of	an
index.

FIGURE	16.1	Table	access	using	an	index

Suppose	the	following	query	was	issued:
SELECT	*
FROM	TABLE_NAME
WHERE	NAME	=	‘SMITH’;

As	shown	in	Figure	16.1,	the	NAME	index	is	referenced	to	resolve	the	location	of	all	names
equal	to	SMITH.	After	the	location	is	determined,	the	data	can	quickly	be	retrieved	from
the	table.	The	data,	names	in	this	case,	is	alphabetized	in	the	index.

Note:	Variations	of	Index	Creation

Indexes	can	be	created	during	table	creation	in	certain	implementations.	Most
implementations	accommodate	a	command,	aside	from	the	CREATE	TABLE
command,	used	to	create	indexes.	Check	your	particular	implementation	for	the
exact	syntax	for	the	command,	if	any,	which	is	available	to	create	an	index.

A	full	table	scan	occurs	if	there	is	no	index	on	the	table	and	the	same	query	is	executed,
which	means	that	every	row	of	data	in	the	table	is	read	to	retrieve	information	pertaining
to	all	individuals	with	the	name	SMITH.

An	index	is	faster	because	it	typically	stores	information	in	an	orderly	tree-like	format.
Consider	if	we	have	a	list	of	books	upon	which	we	place	an	index.	The	index	has	a	root
node,	which	is	the	beginning	point	of	each	query.	Then	it	is	split	into	branches.	Maybe	in

our	case	there	are	two	branches,	one	for	letters	A–L	and	the	other	for	letters	M–Z.	Now	if
you	ask	for	a	book	with	a	name	that	starts	with	the	letter	M,	you	enter	the	index	at	the	root
node	and	immediately	travel	to	the	branch	containing	letters	M–Z.	This	effectively	cuts
your	time	to	find	the	book	by	eliminating	close	to	one-half	the	possibilities.

The	CREATE	INDEX	Command
The	CREATE	INDEX	statement,	as	with	many	other	statements	in	SQL,	varies	greatly
among	different	relational	database	vendors.	It	is	used	to	create	the	various	types	of
indexes	available	for	a	table.	Most	relational	database	implementations	use	the	CREATE
INDEX	statement:
Click	here	to	view	code	image

CREATE	INDEX	INDEX_NAME	ON	TABLE_NAME

The	syntax	for	the	CREATE	INDEX	statement	varies	greatly	among	vendors.	Some
implementations	allow	the	specification	of	a	storage	clause	(as	with	the	CREATE	TABLE
statement),	ordering	(DESC||ASC),	and	the	use	of	clusters.	You	must	check	your	particular
implementation	for	its	correct	syntax.

Types	of	Indexes
You	can	create	different	types	of	indexes	on	tables	in	a	database,	all	of	which	serve	the
same	goal:	to	improve	database	performance	by	expediting	data	retrieval.	This	hour
discusses	single-column	indexes,	composite	indexes,	and	unique	indexes.

Single-Column	Indexes
Indexing	on	a	single	column	of	a	table	is	the	simplest	and	most	common	manifestation	of
an	index.	Obviously,	a	single-column	index	is	one	that	is	created	based	on	only	one	table
column.	The	basic	syntax	follows:

CREATE	INDEX	INDEX_NAME_IDX
ON	TABLE_NAME	(COLUMN_NAME)

For	example,	if	you	want	to	create	an	index	on	EMPLOYEES	for	employees’	last	names,
the	command	used	to	create	the	index	looks	like	the	following:

CREATE	INDEX	NAME_IDX
ON	EMPLOYEES	(LASTNAME);

Tip:	Best	Places	for	Single-Column	Indexes

Single-column	indexes	are	most	effective	when	used	on	columns	that	are	frequently
used	alone	in	the	WHERE	clause	as	query	conditions.	Good	candidates	for	a	single-
column	index	are	an	individual	identification	number,	a	serial	number,	or	a	system-
assigned	key.

Unique	Indexes
You	use	unique	indexes	for	performance	and	data	integrity.	A	unique	index	does	not	allow
duplicate	values	to	be	inserted	into	the	table.	Otherwise,	the	unique	index	performs	the
same	way	a	regular	index	performs.	The	syntax	follows:
Click	here	to	view	code	image

CREATE	UNIQUE	INDEX	INDEX_NAME
ON	TABLE_NAME	(COLUMN_NAME)

If	you	want	to	create	a	unique	index	on	EMPLOYEES	for	an	employee’s	last	name,	the
command	looks	like	the	following:
Click	here	to	view	code	image

CREATE	UNIQUE	INDEX	NAME_IDX
ON	EMPLOYEES	(LASTNAME);

The	only	problem	with	this	index	is	that	every	individual’s	last	name	in	EMPLOYEES
must	be	unique,	which	is	impractical.	However,	a	unique	index	should	be	created	for	a
column,	such	as	an	individual’s	identification	number,	because	that	number	would	be
unique	for	each	individual.

You	might	be	wondering,	“What	if	an	employee’s	identification	number	is	the	primary	key
for	a	table?”	An	index	is	usually	implicitly	created	when	you	define	a	primary	key	for	a
table.	So	normally	you	do	not	also	have	to	create	a	unique	index	on	the	table.

When	working	with	objects	such	as	unique	indexes,	it	is	often	beneficial	to	create	the
indexes	on	empty	tables	during	the	creation	of	the	database	structure.	This	ensures	that	the
data	going	into	the	structure	already	meets	the	demand	of	the	constraints	you	want	to	place
on	it.	If	you	work	with	existing	data,	you	want	to	analyze	the	impact	of	whether	the	data
needs	to	be	adjusted	to	properly	apply	the	index.

Tip:	Unique	Index	Constraints

You	can	create	a	unique	index	only	on	a	column	in	a	table	whose	values	are	unique.
In	other	words,	you	cannot	create	a	unique	index	on	an	existing	table	with	data	that
already	contains	records	on	the	indexed	key	that	are	non-unique.	Similarly,	you
cannot	create	a	unique	index	on	a	column	that	allows	for	NULL	values.	If	you
attempt	to	create	a	unique	index	on	a	column	that	violates	one	of	these	principles,
the	statement	fails.

Composite	Indexes
A	composite	index	is	an	index	on	two	or	more	columns	of	a	table.	You	should	consider
performance	when	creating	a	composite	index	because	the	order	of	columns	in	the	index
has	a	measurable	effect	on	the	data	retrieval	speed.	Generally,	the	most	restrictive	value
should	be	placed	first	for	optimum	performance.	However,	the	columns	that	are	always
specified	in	your	queries	should	be	placed	first.	The	syntax	follows:
Click	here	to	view	code	image

CREATE	INDEX	INDEX_NAME
ON	TABLE_NAME	(COLUMN1,	COLUMN2)

An	example	of	a	composite	index	follows:
Click	here	to	view	code	image

CREATE	INDEX	FLIGHT_IDX
ON	FLIGHTS	(ROUTEID,	AIRCRAFTFLEETID);

In	this	example,	you	create	a	composite	index	based	on	two	columns	in	the	FLIGHTS
table:	ROUTEID	and	AIRCRAFTFLEETID.	You	assume	that	these	two	columns	are
frequently	used	together	as	conditions	in	the	WHERE	clause	of	a	query.

In	deciding	whether	to	create	a	single-column	index	or	a	composite	index,	consider	the
column(s)	that	you	might	use	frequently	in	a	query’s	WHERE	clause	as	filter	conditions.	If
only	one	column	is	used,	choose	a	single-column	index.	If	two	or	more	columns	are
frequently	used	in	the	WHERE	clause	as	filters,	a	composite	index	would	be	the	best
choice.

Implicit	Indexes
Implicit	indexes	are	indexes	that	are	automatically	created	by	the	database	server	when	an
object	is	created.	Indexes	are	automatically	created	for	primary	key	constraints	and	unique
constraints.

Why	are	indexes	automatically	created	for	these	constraints?	Imagine	a	database	server.
Now	say	a	user	adds	a	new	product	to	the	database.	The	product	identification	is	the
primary	key	on	the	table,	which	means	that	it	must	be	a	unique	value.	To	efficiently	make
sure	the	new	value	is	unique	among	hundreds	or	thousands	of	records,	the	product
identifications	in	the	table	must	be	indexed.	Therefore,	when	you	create	a	primary	key	or
unique	constraint,	an	index	is	automatically	created	for	you.

When	Should	Indexes	Be	Considered?
Unique	indexes	are	implicitly	used	with	a	primary	key	for	the	primary	key	to	work.
Foreign	keys	are	also	excellent	candidates	for	an	index	because	you	often	use	them	to	join
the	parent	table.	Most,	if	not	all,	columns	used	for	table	joins	should	be	indexed.

Columns	that	you	frequently	reference	in	the	ORDER	BY	and	GROUP	BY	clauses	should
be	considered	for	indexes.	For	example,	if	you	are	sorting	on	an	individual’s	name,	it	is
quite	beneficial	to	have	an	index	on	the	name	column.	It	renders	an	automatic	alphabetical
order	on	every	name,	thus	simplifying	the	actual	sort	operation	and	expediting	the	output
results.

Furthermore,	you	should	create	indexes	on	columns	with	a	high	number	of	unique	values,
or	columns	that,	when	used	as	filter	conditions	in	the	WHERE	clause,	return	a	low
percentage	of	rows	of	data	from	a	table.	This	is	where	trial	and	error	might	come	into	play.
Just	as	you	should	always	test	production	code	and	database	structures	before
implementing	them	into	production,	so	should	you	test	indexes.	Your	testing	should	center
on	trying	different	combinations	of	indexes,	no	indexes,	single-column	indexes,	and
composite	indexes.	There	is	no	cut-and-dried	rule	for	using	indexes.	The	effective	use	of
indexes	requires	a	thorough	knowledge	of	table	relationships,	query	and	transaction
requirements,	and	the	data	itself.

Note:	Plan	for	Indexing	Accordingly

You	should	plan	your	tables	and	indexes.	Don’t	assume	that	because	an	index	has
been	created,	all	performance	issues	are	resolved.	The	index	might	not	help	at	all.	It
might	actually	hinder	performance	and	might	just	take	up	disk	space.

When	Should	Indexes	Be	Avoided?
Although	indexes	are	intended	to	enhance	a	database’s	performance,	sometimes	you
should	avoid	them.	The	following	guidelines	indicate	when	you	should	reconsider	using
an	index:

	You	should	not	use	indexes	on	small	tables.	This	is	because	indexes	have	an
overhead	associated	with	them	in	terms	of	query	time	to	access	them.	In	the	case	of
small	tables,	it	is	usually	faster	for	the	query	engine	to	do	a	quick	scan	over	the	table
rather	than	look	at	an	index	first.

	You	should	not	use	indexes	on	columns	that	return	a	high	percentage	of	data	rows
when	used	as	a	filter	condition	in	a	query’s	WHERE	clause.	For	instance,	you	would
not	have	an	entry	for	the	words	the	or	and	in	the	index	of	a	book.

	You	can	index	tables	that	have	frequent,	large	batch	update	jobs	run.	However,	the
batch	job’s	performance	is	slowed	considerably	by	the	index.	You	can	correct	the
conflict	of	having	an	index	on	a	table	that	is	frequently	loaded	or	manipulated	by	a
large	batch	process	by	dropping	the	index	before	the	batch	job	and	then	re-creating
the	index	after	the	job	has	completed.	This	is	because	the	indexes	are	also	updated	as
the	data	is	inserted,	causing	additional	overhead.

	You	should	not	use	indexes	on	columns	that	contain	a	high	number	of	NULL	values.
This	is	because	indexes	operate	best	on	columns	that	have	a	higher	uniqueness	of
data	between	rows.	If	there	are	a	lot	of	NULL	values,	the	index	will	be	skewed
toward	the	NULL	values	and	might	affect	performance.

	You	should	not	index	columns	that	are	frequently	manipulated.	Maintenance	on	the
index	can	become	excessive.

You	can	see	in	Figure	16.2	that	an	index	on	a	column,	such	as	gender,	might	not	prove
beneficial.	For	example,	suppose	the	following	query	was	submitted	to	the	database:

SELECT	*
FROM	TABLE_NAME
WHERE	GENDER	=	‘FEMALE’;

FIGURE	16.2	An	example	of	an	ineffective	index

By	referring	to	Figure	16.2,	which	is	based	on	the	previous	query,	you	can	see	that	there	is
constant	activity	between	the	table	and	its	index.	Because	a	high	number	of	data	rows	is
returned	for	WHERE	GENDER	=	'FEMALE'	(or	'MALE'),	the	database	server
constantly	has	to	read	the	index,	then	the	table,	then	the	index,	then	the	table,	and	so	on.	In
this	case,	it	might	be	more	efficient	for	a	full	table	scan	to	occur	because	a	high	percentage
of	the	table	must	be	read	anyway.

Caution:	Indexes	Can	Sometimes	Lead	to	Performance	Problems

Caution	should	be	taken	when	creating	indexes	on	a	table’s	extremely	long	keys
because	performance	is	inevitably	slowed	by	high	I/O	costs.

As	a	general	rule,	do	not	use	an	index	on	a	column	used	in	a	query’s	condition	that	returns
a	high	percentage	of	data	rows	from	the	table.	In	other	words,	do	not	create	an	index	on	a
column	such	as	gender	or	any	column	that	contains	few	distinct	values.	This	is	often
referred	to	as	a	column’s	cardinality,	or	the	uniqueness	of	the	data.	High	cardinality	means
very	unique	and	describes	things	such	as	identification	numbers.	Low-cardinality	values
are	not	very	unique	and	refer	to	columns	such	as	gender.

Altering	an	Index
You	can	alter	an	index	after	it	has	been	created	using	syntax	that	is	similar	to	the	CREATE
INDEX	syntax.	The	types	of	alterations	that	you	can	manage	with	the	statement	differ
between	implementations	but	handle	all	the	basic	variations	of	an	index	in	terms	of
columns,	ordering,	and	such.	The	syntax	follows:

ALTER	INDEX	INDEX_NAME

You	should	take	care	when	altering	an	existing	index	on	production	systems.	This	is
because	in	most	cases	the	index	is	immediately	rebuilt,	which	obviously	creates	an

overhead	in	terms	of	resources.	In	addition,	on	most	basic	implementations,	while	the
index	is	being	rebuilt	it	cannot	be	utilized	for	queries.	This	might	put	an	additional
hindrance	upon	the	performance	of	your	system.

Dropping	an	Index
An	index	can	be	dropped	rather	simply.	Check	your	particular	implementation	for	the
exact	syntax,	but	most	major	implementations	use	the	DROP	command.	You	should	take
care	when	dropping	an	index	because	performance	might	be	slowed	drastically	(or
improved!).	The	syntax	follows:

DROP	INDEX	INDEX_NAME

MySQL	uses	a	slightly	different	syntax;	you	also	specify	the	table	name	of	the	table	that
you	are	dropping	the	index	from:
Click	here	to	view	code	image

DROP	INDEX	INDEX_NAME	ON	TABLE_NAME

The	most	common	reason	for	dropping	an	index	is	an	attempt	to	improve	performance.
Remember	that	if	you	drop	an	index,	you	can	re-create	it	later.	You	might	need	to	rebuild
an	index	to	reduce	fragmentation.	It	is	often	necessary	to	experiment	with	the	use	of
indexes	in	a	database	to	determine	the	route	to	best	performance,	which	might	involve
creating	an	index,	dropping	it,	and	eventually	re-creating	it,	with	or	without	modifications.

Summary
In	this	hour	you	learned	that	you	can	use	indexes	to	improve	the	overall	performance	of
queries	and	transactions	performed	within	the	database.	Database	indexes,	like	an	index	of
a	book,	enable	specific	data	to	be	quickly	referenced	from	a	table.	The	most	common
method	for	creating	indexes	is	through	use	of	the	CREATE	INDEX	command.	Different
types	of	indexes	are	available	among	SQL	implementations.	Unique	indexes,	single-
column	indexes,	and	composite	indexes	are	among	those	types	of	indexes.	You	need	to
consider	many	factors	when	deciding	on	the	index	type	that	best	meets	the	needs	of	your
database.	The	effective	use	of	indexes	often	requires	some	experimentation,	a	thorough
knowledge	of	table	relationships	and	data,	and	a	little	patience—being	patient	when	you
create	an	index	can	save	minutes,	hours,	or	even	days	of	work	later.

Q&A
Q.	Does	an	index	actually	take	up	space	the	way	a	table	does?

A.	Yes,	an	index	takes	up	physical	space	in	a	database.	In	fact,	an	index	can	become
much	larger	than	the	table	for	which	the	index	was	created.

Q.	If	you	drop	an	index	so	that	a	batch	job	can	complete	faster,	how	long	does	it
take	to	re-create	the	index?

A.	Many	factors	are	involved,	such	as	the	size	of	the	index	being	dropped,	the	CPU
usage,	and	the	machine’s	power.

Q.	Should	all	indexes	be	unique?

A.	No,	unique	indexes	allow	no	duplicate	values.	There	might	be	a	need	for	the
allowance	of	duplicate	values	in	a	table.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	What	are	some	major	disadvantages	of	using	indexes?

2.	Why	is	the	order	of	columns	in	a	composite	index	important?

3.	Should	a	column	with	a	large	percentage	of	NULL	values	be	indexed?

4.	Is	the	main	purpose	of	an	index	to	stop	duplicate	values	in	a	table?

5.	True	or	false:	The	main	reason	for	a	composite	index	is	for	aggregate	function	usage
in	an	index.

6.	What	does	cardinality	refer	to?	What	is	considered	a	column	of	high-cardinality?

Exercises
1.	For	the	following	situations,	decide	whether	an	index	should	be	used	and,	if	so,
what	type	of	index	should	be	used:

a.	Several	columns,	but	a	rather	small	table.

b.	Medium-sized	table;	no	duplicates	should	be	allowed.

c.	Several	columns,	very	large	table,	several	columns	used	as	filters	in	the	WHERE
clause.

d.	Large	table,	many	columns,	a	lot	of	data	manipulation.

2.	Write	a	SQL	statement	to	create	an	index	called	EP_POSITION	in	EMPLOYEES
on	the	POSITION	column.

3.	Create	a	statement	to	alter	the	index	you	just	created	to	make	it	unique.	Why	doesn’t
it	work?

4.	For	the	FLIGHTS	table,	choose	some	columns	to	make	up	a	unique	index	for	that
table.	Explain	your	reasoning	behind	picking	those	columns.

5.	Study	the	tables	used	in	this	book.	List	some	good	candidates	for	indexed	columns
based	on	how	a	user	might	search	for	data.

6.	Create	a	multicolumn	index	on	FLIGHTS.	Include	the	following	columns:

ROUTEID,	AIRCRAFTFLEETID,	and	STATUSCODE.

7.	Create	some	additional	indexes	on	your	tables	as	wanted.

Hour	17.	Improving	Database	Performance

What	You’ll	Learn	in	This	Hour:

	Definition	of	SQL	statement	tuning

	Database	tuning	versus	SQL	statement	tuning

	Properly	joining	tables

	The	problems	with	full	table	scans

	Invoking	the	use	of	indexes

	Avoiding	the	use	of	OR	and	HAVING

	Avoiding	large	sort	operations

In	this	hour,	you	learn	how	to	tune	your	SQL	statement	for	maximum	performance	using
some	simple	methods.	Although	up	to	this	point	this	book	has	focused	on	how	to	write
SQL,	it	is	just	as	important	to	learn	how	to	write	efficient	SQL	that	can	help	keep	the
database	running	optimally.	This	hour	focuses	on	simple	steps	that	you	can	take	when
working	with	various	queries	to	ensure	that	your	SQL	performs	optimally.

What	Is	SQL	Statement	Tuning?
SQL	statement	tuning	is	the	process	of	optimally	building	SQL	statements	to	achieve
results	in	the	most	effective	and	efficient	manner.	SQL	tuning	begins	with	the	basic
arrangement	of	the	elements	in	a	query.	Simple	formatting	can	play	a	rather	large	role	in
the	optimization	of	a	statement.

SQL	statement	tuning	mainly	involves	tweaking	a	statement’s	FROM	and	WHERE	clauses.
It	is	mostly	from	these	two	clauses	that	the	database	server	decides	how	to	evaluate	a
query.	To	this	point,	you	have	learned	the	basics	of	the	FROM	and	WHERE	clauses.	Now	it
is	time	to	learn	how	to	fine-tune	them	for	better	results	and	happier	users.

Database	Tuning	Versus	SQL	Statement	Tuning
Before	learning	about	SQL	statement	tuning,	you	need	to	understand	the	difference
between	tuning	a	database	and	tuning	the	SQL	statements	that	access	the	database.

Database	tuning	is	the	process	of	tuning	the	actual	database,	which	encompasses	the
allocated	memory,	disk	usage,	CPU,	I/O,	and	underlying	database	processes.	Tuning	a
database	also	involves	the	management	and	manipulation	of	the	database	structure,	such
as	the	design	and	layout	of	tables	and	indexes.	In	addition,	database	tuning	often	involves
the	modification	of	the	database	architecture	to	optimize	the	use	of	the	hardware	resources
available.	You	need	to	consider	many	other	things	when	tuning	a	database,	but	the
database	administrator	(DBA)	and	system	administrator	normally	accomplish	these	tasks.
The	objective	of	database	tuning	is	to	ensure	that	the	database	has	been	designed	in	a	way
that	best	accommodates	expected	activity	within	the	database.

SQL	tuning	is	the	process	of	tuning	the	SQL	statements	that	access	the	database.	These
SQL	statements	include	database	queries	and	transactional	operations,	such	as	inserts,
updates,	and	deletes.	The	objective	of	SQL	statement	tuning	is	to	formulate	statements
that	most	effectively	access	the	database	in	its	current	state,	taking	advantage	of	database
and	system	resources	and	indexes.	The	objective	is	to	reduce	the	operational	overhead	of
executing	the	query	on	the	database.

Note:	Tuning	Is	Not	One	Dimensional

You	must	perform	both	database	tuning	and	SQL	statement	tuning	to	achieve
optimal	results	when	accessing	the	database.	A	poorly	tuned	database	might	render
your	efforts	in	SQL	tuning	useless,	and	vice	versa.	Ideally,	it	is	best	to	first	tune	the
database,	ensure	that	indexes	exist	where	needed,	and	then	tune	the	SQL	code.

Formatting	Your	SQL	Statement
Formatting	your	SQL	statement	sounds	like	an	obvious	task,	but	it	is	worth	mentioning.	A
newcomer	to	SQL	will	probably	neglect	to	consider	several	things	when	building	a	SQL
statement.	The	upcoming	sections	discuss	the	following	considerations:	Some	are
common	sense;	others	are	not	so	obvious:

	The	format	of	SQL	statements	for	readability

	The	order	of	tables	in	the	FROM	clause

	The	placement	of	the	most	restrictive	conditions	in	the	WHERE	clause

	The	placement	of	join	conditions	in	the	WHERE	clause

Formatting	a	Statement	for	Readability

Tip:	It’s	All	About	the	Optimizer

Most	relational	database	implementations	have	a	SQL	optimizer	that	evaluates	a
SQL	statement	and	determines	the	best	method	for	executing	the	statement	based
on	the	way	a	SQL	statement	is	written	and	the	availability	of	indexes	in	the
database.	Not	all	optimizers	are	the	same.	Check	your	implementation	or	consult
the	database	administrator	to	learn	how	the	optimizer	reads	SQL	code.	You	should
understand	how	the	optimizer	works	to	effectively	tune	a	SQL	statement.

Formatting	a	SQL	statement	for	readability	is	fairly	obvious,	but	many	SQL	statements	are
not	written	neatly.	Although	the	neatness	of	a	statement	does	not	affect	the	actual
performance	(the	database	does	not	care	how	neat	the	statement	appears),	careful
formatting	is	the	first	step	in	tuning	a	statement.	When	you	look	at	a	SQL	statement	with
tuning	intentions,	making	the	statement	readable	is	always	the	first	priority.	How	can	you
determine	whether	the	statement	is	well	written	if	it	is	difficult	to	read?

Some	basic	rules	for	making	a	statement	readable	follow:

	Always	begin	a	new	line	with	each	clause	in	the	statement.	For	example,	place	the

FROM	clause	on	a	separate	line	from	the	SELECT	clause.	Then	place	the	WHERE
clause	on	a	separate	line	from	the	FROM	clause,	and	so	on.

	Use	tabs	or	spaces	for	indentation	when	arguments	of	a	clause	in	the	statement
exceed	one	line.

	Use	tabs	and	spaces	consistently.

	Use	table	aliases	when	multiple	tables	are	used	in	the	statement.	The	use	of	the	full
table	name	to	qualify	each	column	in	the	statement	quickly	clutters	the	statement
and	makes	reading	it	difficult.

	Use	remarks	sparingly	in	SQL	statements	if	they	are	available	within	your	specific
implementation.	Remarks	are	great	for	documentation,	but	too	many	of	them	clutter
a	statement.

	Begin	a	new	line	with	each	column	name	in	the	SELECT	clause	if	many	columns
are	selected.

	Begin	a	new	line	with	each	table	name	in	the	FROM	clause	if	many	tables	are	used.

	Begin	a	new	line	with	each	condition	of	the	WHERE	clause.	You	can	easily	see	all
conditions	of	the	statement	and	the	order	in	which	they	are	used.

Following	is	an	example	of	a	statement	that	would	be	hard	to	decipher:
Click	here	to	view	code	image

SELECT	EMPLOYEES.FIRSTNAME,	EMPLOYEES.LASTNAME,	AIRPORTS.CITY,	AIRPORTS.
AIRPORTNAME,	COUNTRIES.COUNTRY
FROM	EMPLOYEES	INNER	JOIN	AIRPORTS	ON	EMPLOYEES.AIRPORTID	=
AIRPORTS.AIRPORTID
INNER	JOIN
COUNTRIES	ON	AIRPORTS.COUNTRYCODE	=	COUNTRIES.COUNTRYCODE	WHERE	EMPLOYEES.
SALARY>70000	AND	AIRPORTNAME	LIKE	‘M%’	AND	AIRPORTS.City	LIKE	‘G%’;

FIRSTNAME				LASTNAME						CITY																	AIRPORTNAME					COUNTRY
––––	––––-	––––––—	––––				–––
Violeta						Fawver								Gordonsville									Municipal							United	States

(1	row(s)	affected)

Here	the	statement	has	been	reformatted	for	improved	readability:
Click	here	to	view	code	image

SELECT	E.FirstName,
							E.LastName,
							A.City,
							A.AirportName,
							C.Country
FROM		Employees	AS	E	INNER	JOIN
						Airports	AS	A	ON	E.AirportID	=	A.AirportID	INNER	JOIN
						Countries	AS	C	ON	A.CountryCode	=	C.CountryCode
WHERE
			(E.Salary	>	70000)
			AND	(A.AirportName	LIKE	‘M%’)
			AND	(A.City	LIKE	‘G%’);

FIRSTNAME				LASTNAME						CITY																	AIRPORTNAME					COUNTRY
––––	––––-	––––––—	––––				–––

Violeta						Fawver								Gordonsville									Municipal							United	States

(1	row(s)	affected)

Both	statements	have	the	same	content,	but	the	second	statement	is	much	more	readable.	It
has	been	greatly	simplified	through	the	use	of	table	aliases,	which	have	been	defined	in
the	query’s	FROM	clause.	In	addition,	the	second	statement	aligns	the	elements	of	each
clause,	making	each	clause	stand	out.

Again,	making	a	statement	more	readable	does	not	directly	improve	its	performance,	but	it
assists	you	in	making	modifications	and	debugging	a	lengthy	and	otherwise	complex
statement.	Now	you	can	easily	identify	the	columns	selected,	the	tables	used,	the	table
joins	performed,	and	the	conditions	placed	on	the	query.

Note:	Always	Establish	Standards

It	is	especially	important	to	establish	coding	standards	in	a	multiuser	programming
environment.	If	all	code	is	consistently	formatted,	shared	code	and	modifications	to
code	are	much	easier	to	manage.

Arranging	Tables	in	the	FROM	Clause
The	arrangement	or	order	of	tables	in	the	FROM	clause	might	make	a	difference,
depending	on	how	the	optimizer	reads	the	SQL	statement.	For	example,	it	might	be	more
beneficial	to	list	the	smaller	tables	first	and	the	larger	tables	last.	Some	users	with	a	lot	of
experience	have	found	that	listing	the	larger	tables	last	in	the	FROM	clause	is	more
efficient.

Following	is	an	example	of	the	FROM	clause:
FROM	SMALLEST	TABLE,
					LARGEST	TABLE

Note:	Check	for	Performance	When	Using	Multiple	Tables

Check	your	particular	implementation	for	performance	tips,	if	any,	when	listing
multiple	tables	in	the	FROM	clause.

Ordering	Join	Conditions
As	you	learned	in	Hour	13,	“Joining	Tables	in	Queries,”	most	joins	use	a	base	table	to	link
tables	that	have	one	or	more	common	columns	on	which	to	join.	The	base	table	is	the
main	table	that	most	or	all	tables	are	joined	to	in	a	query.	The	column	from	the	base	table
is	normally	placed	on	the	right	side	of	a	join	operation	in	the	WHERE	clause.	The	tables
joined	to	the	base	table	are	normally	in	order	from	smallest	to	largest,	similar	to	the	tables
listed	in	the	FROM	clause.

If	a	base	table	doesn’t	exist,	the	tables	should	be	listed	from	smallest	to	largest,	with	the
largest	tables	on	the	right	side	of	the	join	operation	in	the	WHERE	clause.	The	join
conditions	should	be	in	the	first	position(s)	of	the	WHERE	clause	followed	by	the	filter

clause(s),	as	shown	here:
Click	here	to	view	code	image

FROM	TABLE1,																																	Smallest	table
					TABLE2,																																	to
					TABLE3																																		Largest	table,	also	base	table
WHERE	TABLE1.COLUMN	=	TABLE3.COLUMN										Join	condition
		AND	TABLE2.COLUMN	=	TABLE3.COLUMN										Join	condition
[AND	CONDITION1]																											Filter	condition
[AND	CONDITION2]																											Filter	condition

Caution:	Be	Restrictive	with	Your	Joins

Because	joins	typically	return	a	high	percentage	of	rows	of	data	from	the	table(s),
you	should	evaluate	join	conditions	after	more	restrictive	conditions.

In	this	example,	TABLE3	is	used	as	the	base	table.	TABLE1	and	TABLE2	are	joined	to
TABLE3	for	both	simplicity	and	proven	efficiency.

The	Most	Restrictive	Condition
The	most	restrictive	condition	is	typically	the	driving	factor	in	achieving	optimal
performance	for	a	SQL	query.	What	is	the	most	restrictive	condition?	The	condition	in	the
WHERE	clause	of	a	statement	that	returns	the	fewest	rows	of	data.	Conversely,	the	least
restrictive	condition	is	the	condition	in	a	statement	that	returns	the	most	rows	of	data.	This
hour	is	concerned	with	the	most	restrictive	condition	simply	because	it	does	the	most
filtering	of	the	data	that	is	to	be	returned	by	the	query.

It	should	be	your	goal	for	the	SQL	optimizer	to	evaluate	the	most	restrictive	condition
first,	because	a	smaller	subset	of	data	is	returned	by	the	condition,	thus	reducing	the
query’s	overhead.	The	effective	placement	of	the	most	restrictive	condition	in	the	query
requires	knowledge	of	how	the	optimizer	operates.	The	optimizers	in	some	cases	seem	to
read	from	the	bottom	of	the	WHERE	clause	up.	Therefore,	you	want	to	place	the	most
restrictive	condition	last	in	the	WHERE	clause,	which	is	the	condition	that	the	optimizer
reads	first.	The	following	example	shows	how	to	structure	the	WHERE	clause	based	on	the
restrictiveness	of	the	conditions	and	the	FROM	clause	on	the	size	of	the	tables:
Click	here	to	view	code	image

FROM	TABLE1,																													Smallest	table
					TABLE2,																														to
					TABLE3																															Largest	table,	also	base	table
WHERE	TABLE1.COLUMN	=	TABLE3.COLUMN							Join	condition
		AND	TABLE2.COLUMN	=	TABLE3.COLUMN							Join	condition
[AND	CONDITION1]																								Least	restrictive
[AND	CONDITION2]																								Most	restrictive

Caution:	Always	Test	Your	WHERE	Clauses

If	you	do	not	know	how	your	particular	implementation’s	SQL	optimizer	works,
and	the	DBA	does	not	know,	or	if	you	do	not	have	sufficient	documentation,	you
can	execute	a	large	query	that	takes	a	while	to	run	and	then	rearrange	conditions	in
the	WHERE	clause.	Be	sure	to	record	the	time	it	takes	the	query	to	complete	each
time	you	make	changes.	You	should	have	to	run	only	a	couple	tests	to	figure	out
whether	the	optimizer	reads	the	WHERE	clause	from	the	top	to	bottom	or	bottom	to
top.	Turn	off	database	caching	during	the	testing	for	more	accurate	results.

Following	is	an	example	using	a	phony	table:

Following	is	the	first	query:
SELECT	COUNT(*)

FROM	TEST

WHERE	LASTNAME	=	‘SMITH’

		AND	STATE	=	‘IN’;

		COUNT(*)
–––-
					1,024

Following	is	the	second	query:
SELECT	COUNT(*)

FROM	TEST

WHERE	STATE	=	‘IN’

		AND	LASTNAME	=	‘SMITH’;

		COUNT(*)
–––-
					1,024

Suppose	that	the	first	query	completed	in	20	seconds,	whereas	the	second	query	completed
in	10	seconds.	Because	the	second	query	returned	faster	results	and	the	most	restrictive
condition	was	listed	last	in	the	WHERE	clause,	it	is	safe	to	assume	that	the	optimizer	reads
the	WHERE	clause	from	the	bottom	up.

Note:	Try	to	Use	Indexed	Columns

It	is	a	good	practice	to	use	an	indexed	column	as	the	most	restrictive	condition	in	a
query.	Indexes	generally	improve	a	query’s	performance.

Full	Table	Scans
A	full	table	scan	occurs	when	an	index	is	not	used	by	the	query	engine	or	there	is	no	index
on	the	table(s)	being	used.	Full	table	scans	usually	return	data	much	slower	than	when	an
index	is	used.	The	larger	the	table,	the	slower	that	data	is	returned	when	a	full	table	scan	is
performed.	The	query	optimizer	decides	whether	to	use	an	index	when	executing	the	SQL
statement.	The	index	is	used	if	it	exists	in	most	cases.

Some	implementations	have	sophisticated	query	optimizers	that	can	decide	whether	to	use
an	index.	Decisions	such	as	this	are	based	on	statistics	that	are	gathered	on	database
objects,	such	as	the	size	of	an	object	and	the	estimated	number	of	rows	that	are	returned
by	a	condition	with	an	indexed	column.	Refer	to	your	implementation	documentation	for
specifics	on	the	decision-making	capabilities	of	your	relational	database’s	optimizer.

You	should	avoid	full	table	scans	when	reading	large	tables.	For	example,	a	full	table	scan
is	performed	when	a	table	that	does	not	have	an	index	is	read,	which	usually	takes	a
considerably	longer	time	to	return	the	data.	An	index	should	be	considered	for	the
majority	of	larger	tables.	On	small	tables,	as	previously	mentioned,	the	optimizer	might
choose	the	full	table	scan	over	using	the	index	if	the	table	is	indexed.	For	a	small	table
with	an	index,	you	should	consider	dropping	the	index	and	reserving	that	space	for	other
needy	objects	in	the	database.

Tip:	There	Are	Simple	Ways	to	Avoid	Table	Scans

The	easiest	and	most	obvious	way	to	avoid	a	full	table	scan—outside	of	ensuring
that	indexes	exist	on	the	table—is	to	use	conditions	in	a	query’s	WHERE	clause	to
filter	data	to	be	returned.

The	following	is	a	reminder	of	data	that	should	be	indexed:

	Columns	used	as	primary	keys

	Columns	used	as	foreign	keys

	Columns	frequently	used	to	join	tables

	Columns	frequently	used	as	conditions	in	a	query

	Columns	that	have	a	high	percentage	of	unique	values

Tip:	Table	Scans	Are	Not	Always	Bad

Sometimes,	full	table	scans	are	good.	You	should	perform	them	on	queries	against
small	tables	or	queries	whose	conditions	return	a	high	percentage	of	rows.	The
easiest	way	to	force	a	full	table	scan	is	to	avoid	creating	an	index	on	the	table.

Other	Performance	Considerations
There	are	other	performance	considerations	when	tuning	SQL	statements.	The	following
concepts	are	discussed	in	the	next	sections:

	Using	the	LIKE	operator	and	wildcards

	Avoiding	the	OR	operator

	Avoiding	the	HAVING	clause

	Avoiding	large	sort	operations

	Using	stored	procedures

	Disabling	indexes	during	batch	loads

Using	the	LIKE	Operator	and	Wildcards
The	LIKE	operator	is	a	useful	tool	that	places	conditions	on	a	query	in	a	flexible	manner.
Using	wildcards	in	a	query	can	eliminate	many	possibilities	of	data	that	should	be
retrieved.	Wildcards	are	flexible	for	queries	that	search	for	similar	data	(data	that	is	not
equivalent	to	an	exact	value	specified).

Suppose	you	want	to	write	a	query	using	EMPLOYEE_TBL	selecting	the	EMP_ID,
LAST_NAME,	FIRST_NAME,	and	STATE	columns.	You	need	to	know	the	employee
identification,	name,	and	state	for	all	the	employees	with	the	last	name	Stevens.	Three
SQL	statement	examples	with	different	wildcard	placements	serve	as	examples.

The	following	is	Query	1:
Click	here	to	view	code	image

SELECT	EMPLOYEEID,	LASTNAME,	FIRSTNAME,	STATE
FROM	EMPLOYEES
WHERE	LASTNAME	LIKE	‘STEVENS’;

Next	is	Query	2:
Click	here	to	view	code	image

SELECT	EMPLOYEEID,	LASTNAME,	FIRSTNAME,	STATE
FROM	EMPLOYEES
WHERE	LASTNAME	LIKE	‘%EVENS%’;

Here	is	the	last	query,	Query	3:
Click	here	to	view	code	image

SELECT	EMPLOYEEID,	LASTNAME,	FIRSTNAME,	STATE
FROM	EMPLOYEES
WHERE	LASTNAME	LIKE	‘ST%’;

The	SQL	statements	do	not	necessarily	return	the	same	results.	More	than	likely,	Query	1
will	return	fewer	rows	than	the	other	two	queries	and	will	take	advantage	of	indexing.
Query	2	and	Query	3	are	less	specific	as	to	the	desired	returned	data,	thus	making	them
slower	than	Query	1.	In	addition,	Query	3	is	probably	faster	than	Query	2	because	the	first
letters	of	the	string	for	which	you	are	searching	are	specified.	(And	the	column
LASTNAME	is	likely	to	be	indexed.).	So	Query	3	could	potentially	take	advantage	of	an
index.

With	Query	1,	you	might	retrieve	all	individuals	with	the	last	name	Stevens;	but	can’t
Stevens	be	spelled	different	ways?	Query	2	picks	up	all	individuals	with	the	last	name
Stevens	and	its	various	spellings.	Query	3	also	picks	up	any	last	name	starting	with	ST;
this	is	the	only	way	to	ensure	that	you	receive	all	the	Stevens	(or	Stephens).

Avoiding	the	OR	Operator
Rewriting	the	SQL	statement	using	the	IN	predicate	instead	of	the	OR	operator
consistently	and	substantially	improves	data	retrieval	speed.	Your	implementation	tells
you	about	tools	you	can	use	to	time	or	check	the	performance	between	the	OR	operator
and	the	IN	predicate.	An	example	of	how	to	rewrite	a	SQL	statement	by	taking	the	OR
operator	out	and	replacing	the	OR	operator	with	the	IN	predicate	follows.	Refer	to	Hour	8,
“Using	Operators	to	Categorize	Data,”	for	the	use	of	the	OR	operator	and	the	IN	predicate.

Following	is	a	query	using	the	OR	operator:
Click	here	to	view	code	image

SELECT	EMPLOYEEID,	LASTNAME,	FIRSTNAME
FROM	EMPLOYEES
WHERE	CITY	=	‘INDIANAPOLIS	IN’
			OR	CITY	=	‘KOKOMO’
			OR	CITY	=	‘TERRE	HAUTE’;

Following	is	the	same	query	using	the	IN	operator:
Click	here	to	view	code	image

SELECT	EMPLOYEEID,	LASTNAME,	FIRSTNAME
FROM	EMPLOYEES
WHERE	CITY	IN	(‘INDIANAPOLIS	IN’,	‘KOKOMO’,
															‘TERRE	HAUTE’);

The	SQL	statements	retrieve	the	same	data;	however,	through	testing	and	experience,	you
find	that	the	data	retrieval	is	measurably	faster	by	replacing	OR	conditions	with	the	IN
predicate,	as	in	the	second	query.

Avoiding	the	HAVING	Clause
The	HAVING	clause	is	useful	for	paring	down	the	result	of	a	GROUP	BY	clause;	however,
you	can’t	use	it	without	cost.	Using	the	HAVING	clause	gives	the	SQL	optimizer	extra
work,	which	results	in	extra	time.	Not	only	will	the	query	be	concerned	with	grouping
result	sets,	but	it	also	will	be	concerned	with	parsing	those	result	sets	down	via	the
restrictions	of	the	HAVING	clause.	For	example,	look	at	the	following	statement:
Click	here	to	view	code	image

SELECT	A.AIRPORTNAME,
							A.CITY,
							SUM(E.SALARY)	AS	SALARY_TOTAL,
							SUM(E.PAYRATE*160)	AS	HOURLY_TOTAL
FROM		Employees	AS	E	INNER	JOIN
						Airports	AS	A	ON	E.AirportID	=	A.AirportID	INNER	JOIN
						Countries	AS	C	ON	A.CountryCode	=	C.CountryCode
WHERE	A.CountryCode=‘US’
GROUP	BY	A.AIRPORTNAME,
						A.CITY
HAVING	AVG(E.PAYRATE)>18;

Here	we	are	trying	to	determine	the	total	employee	cost	for	airports	where	the	average
hourly	rate	is	greater	than	$18.00/hr.	Although	this	query	is	fairly	simple	and	our	sample
database	is	small,	the	addition	of	the	HAVING	clause	introduces	some	overhead,
especially	when	the	HAVING	clause	has	more	complex	logic	and	a	higher	number	of

groupings	to	be	applied.	If	possible,	you	should	write	SQL	statements	without	using	the
HAVING	clause	or	design	the	HAVING	clause	restrictions	so	that	they	are	as	simple	as
possible.

Avoiding	Large	Sort	Operations
Large	sort	operations	mean	using	the	ORDER	BY,	GROUP	BY,	and	HAVING	clauses.
Subsets	of	data	must	be	stored	in	memory	or	to	disk	(if	there	is	not	enough	space	in
allotted	memory)	whenever	sort	operations	are	performed.	You	must	sort	data	often.	The
main	point	is	that	these	sort	operations	affect	a	SQL	statement’s	response	time.	Because
you	cannot	always	avoid	large	sort	operations,	it	is	best	to	schedule	queries	with	large
sorts	as	periodic	batch	processes	during	off-peak	database	usage	so	that	the	performance
of	most	user	processes	is	not	affected.

Using	Stored	Procedures
You	should	create	stored	procedures	for	SQL	statements	executed	on	a	regular	basis—
particularly	large	transactions	or	queries.	Stored	procedures	are	simply	SQL	statements
that	are	compiled	and	permanently	stored	in	the	database	in	an	executable	format.

Normally,	when	a	SQL	statement	is	issued	in	the	database,	the	database	must	check	the
syntax	and	convert	the	statement	into	an	executable	format	within	the	database	(called
parsing).	The	statement,	after	it	is	parsed,	is	stored	in	memory;	however,	it	is	not
permanent.	This	means	that	when	other	operations	need	memory,	the	statement	might	be
ejected	from	memory.	For	stored	procedures,	the	SQL	statement	is	always	available	in	an
executable	format	and	remains	in	the	database	until	it	is	dropped	like	any	other	database
object.	Stored	procedures	are	discussed	in	more	detail	in	Hour	22,	“Advanced	SQL
Topics.”

Disabling	Indexes	During	Batch	Loads
When	a	user	submits	a	transaction	to	the	database	(INSERT,	UPDATE,	or	DELETE),	an
entry	is	made	to	both	the	database	table	and	any	indexes	associated	with	the	table	being
modified.	This	means	that	if	there	is	an	index	on	the	EMPLOYEES	table	and	a	user	updates
the	EMPLOYEES	table,	an	update	also	occurs	to	the	index	associated	with	the
EMPLOYEES	table.	In	a	transactional	environment,	having	a	write	to	an	index	occur	every
time	a	write	to	the	table	occurs	is	usually	not	an	issue.

During	batch	loads,	however,	an	index	can	actually	cause	serious	performance
degradation.	A	batch	load	might	consist	of	hundreds,	thousands,	or	millions	of
manipulation	statements	or	transactions.	Because	of	their	volume,	batch	loads	take	a	long
time	to	complete	and	are	normally	scheduled	during	off-peak	hours—usually	during
weekends	or	evenings.	To	optimize	performance	during	a	batch	load	that	might	equate	to
decreasing	the	time	it	takes	the	batch	load	to	complete	from	12	hours	to	6	hours,	it	is
recommended	that	the	indexes	associated	with	the	table	affected	during	the	load	are
dropped.	When	you	drop	the	indexes,	changes	are	written	to	the	tables	much	faster,	so	the
job	completes	faster.	When	the	batch	load	is	complete,	you	should	rebuild	the	indexes.
During	the	rebuild,	the	indexes	are	populated	with	all	the	appropriate	data	from	the	tables.

Although	it	might	take	a	while	for	an	index	to	be	created	on	a	large	table,	the	overall	time
expended	if	you	drop	the	index	and	rebuild	it	is	less.

Another	advantage	to	rebuilding	an	index	after	a	batch	load	completes	is	the	reduction	of
fragmentation	that	is	found	in	the	index.	When	a	database	grows,	records	are	added,
removed,	and	updated,	and	fragmentation	can	occur.	For	any	database	that	experiences	a
lot	of	growth,	it	is	a	good	idea	to	periodically	drop	and	rebuild	large	indexes.	When	you
rebuild	an	index,	the	number	of	physical	extents	that	comprise	the	index	is	decreased,
there	is	less	disk	I/O	involved	to	read	the	index,	the	user	gets	results	quicker,	and	everyone
is	happy.

Cost-Based	Optimization
Often	you	inherit	a	database	that	is	in	need	of	SQL	statement	tuning.	These	existing
systems	might	have	thousands	of	SQL	statements	executing	at	any	given	time.	To
optimize	the	amount	of	time	spent	on	performance	tuning,	you	need	a	way	to	determine
what	queries	are	most	beneficial.	This	is	where	cost-based	optimization	comes	into	play.
Cost-based	optimization	attempts	to	determine	which	queries	are	most	costly	in	relation	to
the	overall	system	resources	spent.	For	instance,	say	you	measure	cost	by	execution
duration	and	you	have	the	following	two	queries	with	their	corresponding	run	times:
Click	here	to	view	code	image

SELECT	*	FROM	EMPLOYEES
WHERE	FIRSTNAME	LIKE	‘%LE%’													2	sec

SELECT	*	FROM	EMPLOYEES
WHERE	FIRSTNAME	LIKE	‘G%’;														1	sec

At	first,	it	might	appear	that	the	first	statement	is	the	one	you	need	to	concentrate	your
efforts	on.	However,	what	if	the	second	statement	is	executed	1,000	times	an	hour	but	the
first	is	performed	only	10	times	in	the	same	hour?	Doesn’t	this	make	a	huge	difference	in
how	you	allocate	your	time?

Cost-based	optimization	ranks	SQL	statements	in	order	of	total	computational	cost.
Computational	cost	is	easily	determined	based	on	some	measure	of	query	execution
(duration,	number	of	reads,	and	so	on)	multiplied	by	the	number	of	executions	over	a
given	period:

Total	Computational	Cost	=	Execution	Measure	*	(number	of	executions)

This	is	important	because	you	get	the	most	overall	benefit	from	tuning	the	queries	with	the
most	total	computational	cost	first.	Looking	at	the	previous	example,	if	you	cut	each
statement	execution	time	in	half,	you	can	easily	figure	out	the	total	computational	savings:

Statement	#1:	1	sec	*	10	executions	=	10	sec	of	computational	savings

Statement	#2:	.5	sec	*	1000	executions	=	500	sec	of	computational	savings

Now	it	is	much	easier	to	understand	why	your	valuable	time	should	be	spent	on	the	second
statement	instead	of	the	first.	Not	only	have	you	worked	to	optimize	your	database,	but
you’ve	optimized	your	time	as	well.

Tip:	Performance	Tools

Many	relational	databases	have	built-in	tools	that	assist	in	SQL	statement	database
performance	tuning.	For	example,	Oracle	has	a	tool	called	EXPLAIN	PLAN	that
shows	the	user	the	execution	plan	of	a	SQL	statement.	Another	tool	in	Oracle	that
measures	the	actual	elapsed	time	of	a	SQL	statement	is	TKPROF.	In	SQL	Server,
the	Query	Analyzer	has	several	options	to	provide	you	with	an	estimated	execution
plan	or	statistics	from	the	executed	query.	Check	with	your	DBA	and
implementation	documentation	for	more	information	on	available	tools.

Summary
In	this	hour	you	learned	the	meaning	of	tuning	SQL	statements	in	a	relational	database.
You	learned	about	two	basic	types	of	tuning:	database	tuning	and	SQL	statement	tuning—
both	of	which	are	vital	to	the	efficient	operation	of	the	database	and	SQL	statements
within	it.	Each	is	equally	important	and	cannot	be	optimally	tuned	without	the	other.

You	read	about	methods	for	tuning	a	SQL	statement,	starting	with	a	statement’s	actual
readability,	which	does	not	directly	improve	performance	but	aids	the	programmer	in	the
development	and	management	of	statements.	One	of	the	main	issues	in	SQL	statement
performance	is	the	use	of	indexes.	There	are	times	to	use	indexes	and	times	to	avoid	using
them.	For	all	measures	taken	to	improve	SQL	statement	performance,	you	need	to
understand	the	data	itself,	the	database	design	and	relationships,	and	the	users’	needs	as	far
as	accessing	the	database.

Q&A
Q.	By	following	what	I	have	learned	about	performance,	what	realistic
performance	gains,	as	far	as	data	retrieval	time,	can	I	expect	to	see?

A.	Realistically,	you	could	see	performance	gains	from	fractions	of	a	second	to	minutes,
hours,	or	even	days.

Q.	How	can	I	test	my	SQL	statements	for	performance?

A.	Each	implementation	should	have	a	tool	or	system	to	check	performance.	Oracle7
was	used	to	test	the	SQL	statements	in	this	book.	Oracle	has	several	tools	for
checking	performance.	Some	of	these	tools	include	the	EXPLAIN	PLAN,	TKPROF,
and	SET	commands.	Check	your	particular	implementation	for	tools	that	are	similar
to	Oracle’s.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	Would	the	use	of	a	unique	index	on	a	small	table	be	of	any	benefit?

2.	What	happens	when	the	optimizer	chooses	not	to	use	an	index	on	a	table	when	a
query	has	been	executed?

3.	Should	the	most	restrictive	clause(s)	be	placed	before	the	join	condition(s)	or	after
the	join	conditions	in	the	WHERE	clause?

4.	When	is	the	LIKE	operator	considered	bad	in	terms	of	performance?

5.	How	can	you	optimize	batch	load	operations	in	terms	of	indexes?

6.	Which	three	clauses	are	the	cause	of	sort	operations	that	harm	performance?

Exercises
1.	Rewrite	the	following	SQL	statements	to	improve	their	performance.	Use	the
fictitious	EMPLOYEE_TBL	and	EMPLOYEE_PAY_TBL	as	described	here:

Click	here	to	view	code	image
EMPLOYEE_TBL
EMP_ID								VARCHAR(9)					NOT	NULL					Primary	key,
LAST_NAME					VARCHAR(15)				NOT	NULL,
FIRST_NAME				VARCHAR(15)				NOT	NULL,
MIDDLE_NAME			VARCHAR(15),
ADDRESS							VARCHAR(30)				NOT	NULL,
CITY										VARCHAR(15)				NOT	NULL,
STATE									VARCHAR(2)					NOT	NULL,
ZIP											INTEGER(5)					NOT	NULL,
PHONE									VARCHAR(10),
PAGER									VARCHAR(10),
CONSTRAINT	EMP_PK	PRIMARY	KEY	(EMP_ID)
EMPLOYEE_PAY_TBL
EMP_ID												VARCHAR(9)					NOT	NULL					primary	key,
POSITION										VARCHAR(15)				NOT	NULL,
DATE_HIRE									DATETIME,
PAY_RATE										DECIMAL(4,2)			NOT	NULL,
DATE_LAST_RAISE			DATETIME,
SALARY												DECIMAL(8,2),
BONUS													DECIMAL(8,2),
CONSTRAINT	EMP_FK	FOREIGN	KEY	(EMP_ID)
REFERENCES	EMPLOYEE_TBL	(EMP_ID)

a.
Click	here	to	view	code	image

SELECT	EMP_ID,	LAST_NAME,	FIRST_NAME,
										PHONE
			FROM	EMPLOYEE_TBL
			WHERE	SUBSTRING(PHONE,	1,	3)	=	‘317’	OR
									SUBSTRING(PHONE,	1,	3)	=	‘812’	OR
									SUBSTRING(PHONE,	1,	3)	=	‘765’;

b.
Click	here	to	view	code	image

SELECT	LAST_NAME,	FIRST_NAME
			FROM	EMPLOYEE_TBL
			WHERE	LAST_NAME	LIKE	‘%ALL%;

c.
Click	here	to	view	code	image

SELECT	E.EMP_ID,	E.LAST_NAME,	E.FIRST_NAME,
										EP.SALARY
			FROM	EMPLOYEE_TBL	E,
			EMPLOYEE_PAY_TBL	EP
			WHERE	LAST_NAME	LIKE	‘S%’
								AND	E.EMP_ID	=	EP.EMP_ID;

2.	Add	another	table	called	EMPLOYEE_PAYHIST_TBL	that	contains	a	large	amount
of	pay	history	data.	Use	the	following	table	to	write	the	series	of	SQL	statements	to
address	the	following	problems.	Be	sure	you	take	steps	to	ensure	the	queries	you
write	perform	well.

Click	here	to	view	code	image
EMPLOYEE_PAYHIST_TBL
PAYHIST_ID								VARCHAR(9)					NOT	NULL					primary	key,
EMP_ID												VARCHAR(9)					NOT	NULL,
START_DATE								DATETIME							NOT	NULL,
END_DATE										DATETIME,
PAY_RATE										DECIMAL(4,2)			NOT	NULL,
SALARY												DECIMAL(8,2)			NOT	NULL,
BONUS													DECIMAL(8,2)			NOT	NULL,
CONSTRAINT	EMP_FK	FOREIGN	KEY	(EMP_ID)
REFERENCES	EMPLOYEE_TBL	(EMP_ID)

a.	Find	the	SUM	of	the	salaried	versus	nonsalaried	employees	by	the	year	in	which
their	pay	started.

b.	Find	the	difference	in	the	yearly	pay	of	salaried	employees	versus	nonsalaried
employees	by	the	year	in	which	their	pay	started.	Consider	the	nonsalaried
employees	to	be	working	full	time	during	the	year	(PAY_RATE	*	52	*	40).

c.	Find	the	difference	in	what	employees	make	now	versus	what	they	made	when
they	started	with	the	company.	Again,	consider	the	nonsalaried	employees	to	be
full	time.	Also	consider	that	the	employees’	current	pay	is	reflected	in	the
EMPLOYEE_PAY_TBL	as	well	as	the	EMPLOYEE_PAYHIST_TBL.	In	the	pay
history	table,	the	current	pay	is	reflected	as	a	row	with	the	END_DATE	for	pay
equal	to	NULL.

Part	VI:	Using	SQL	to	Manage	Users	and
Security

Hour	18.	Managing	Database	Users

What	You’ll	Learn	in	This	Hour:

	Types	of	users

	User	management

	The	user	versus	the	schema

	The	importance	of	user	sessions

	Altering	a	user’s	attributes

	Dropping	users	from	the	database

	Tools	utilized	by	users

In	this	hour,	you	learn	about	one	of	the	most	critical	administration	functions	for	any
relational	database:	managing	database	users.	Managing	users	ensures	that	your	database
is	available	to	the	required	people	and	application	while	keeping	external	entities	out.
Considering	the	amount	of	sensitive	commercial	and	personal	data	that	is	stored	in
databases,	this	hour	is	definitely	one	that	you	should	pay	careful	attention	to.

User	Management	in	the	Database
Users	are	the	reason	for	designing,	creating,	implementing,	and	maintaining	any	database.
Their	needs	are	considered	when	the	database	is	designed,	and	the	final	goal	in
implementing	a	database	is	making	the	database	available	to	users,	who	in	turn	utilize	the
database	that	you,	and	possibly	many	others,	have	had	a	hand	in	developing.

Some	believe	that	if	there	were	no	users,	nothing	bad	would	ever	happen	to	the	database.
Although	this	statement	reeks	with	truth,	the	database	was	actually	created	to	hold	data	so
that	users	could	function	in	their	day-to-day	jobs.

Although	user	management	is	often	the	database	administrator’s	implicit	task,	other
individuals	sometimes	take	a	part	in	the	user	management	process.	User	management	is
vital	in	the	life	of	a	relational	database	and	is	ultimately	managed	through	the	use	of	SQL
concepts	and	commands;	although	they	vary	from	vendor	to	vendor.	The	ultimate	goal	of
the	database	administrator	for	user	management	is	to	strike	the	proper	balance	between
giving	users	access	to	the	data	they	need	and	maintaining	the	integrity	of	the	data	within
the	system.

Note:	Roles	Vary	Widely

Titles,	roles,	and	duties	of	users	vary	widely	(and	wildly)	from	workplace	to
workplace,	depending	on	the	size	of	each	organization	and	each	organization’s
specific	data	processing	needs.	One	organization’s	database	administrator	might	be
another	organization’s	“computer	guru.”

Types	of	Users
There	are	several	types	of	database	users:

	Data	entry	clerks

	Programmers

	System	engineers

	Database	administrators

	System	analysts

	Developers

	Testers

	Managers

	End	users

Each	type	of	user	has	a	unique	set	of	job	functions	(and	problems),	all	of	which	are	critical
to	the	user’s	daily	survival	and	job	security.	Furthermore,	each	type	of	user	has	different
levels	of	authority	and	a	special	place	in	the	database.

Who	Manages	Users?
A	company’s	management	staff	is	responsible	for	the	day-to-day	management	of	users;
however,	the	database	administrator	(DBA)	or	other	assigned	individuals	are	ultimately
responsible	for	the	management	of	users	within	the	database.

The	DBA	usually	handles	creating	the	database	user	accounts,	roles,	privileges,	and
profiles,	as	well	as	dropping	those	user	accounts	from	the	database.	Because	it	can	become
an	overwhelming	task	in	a	large	and	active	environment,	some	companies	have	a	security
officer	who	assists	the	DBA	with	the	user	management	process.

The	security	officer,	if	one	is	assigned,	is	usually	responsible	for	the	paperwork,	relaying
to	the	DBA	a	user’s	job	requirements	and	letting	the	DBA	know	when	a	user	no	longer
requires	access	to	the	database.

The	system	analyst,	or	system	administrator,	is	usually	responsible	for	the	operating
system	security,	which	entails	creating	users	and	assigning	appropriate	privileges.	The
security	officer	also	might	assist	the	system	analyst	in	the	same	way	he	does	the	database
administrator.

Maintaining	an	orderly	way	in	which	to	assign	and	remove	permissions	as	well	as	to
document	the	changes	makes	the	process	much	easier	to	maintain.	Documentation	also
enables	you	to	have	a	paper	trail	to	point	to	when	the	security	of	your	system	needs	to	be
audited	either	internally	or	externally.	We	expand	on	the	user	management	system
throughout	this	hour.

The	User’s	Place	in	the	Database
A	user	should	be	given	the	roles	and	privileges	necessary	to	accomplish	her	job.	No	user
should	have	database	access	that	extends	beyond	the	scope	of	her	job	duties.	Protecting
the	data	is	the	entire	reason	for	setting	up	user	accounts	and	security.	Data	can	be	damaged
or	lost,	even	unintentionally,	if	the	wrong	user	has	access	to	the	wrong	data.	When	the	user
no	longer	requires	database	access,	that	user’s	account	should	be	either	removed	from	the
database	or	disabled	as	quickly	as	possible.

All	users	have	their	place	in	the	database,	yet	some	have	more	responsibilities	and	duties
than	others.	Database	users	are	like	parts	of	a	human	body—all	work	together	in	unison	to
accomplish	some	goal.

Note:	Follow	a	Systematic	Approach	to	User	Management

User	account	management	is	vital	to	the	protection	and	success	of	any	database;
when	not	managed	systematically,	it	often	fails.	User	account	management	is	one	of
the	simplest	database	management	tasks,	theoretically,	but	it	is	often	complicated
by	politics	and	communication	problems.

How	Does	a	User	Differ	from	a	Schema?
A	database’s	objects	are	associated	with	database	user	accounts,	called	schemas.	A	schema
is	a	collection	of	database	objects	that	a	database	user	owns.	This	database	user	is	called
the	schema	owner.	Often	schemas	logically	group	like	objects	in	a	database	and	then
assign	them	to	a	particular	schema	owner	to	manage.	You	could	think	of	it	in	terms	of
possibly	grouping	all	the	personnel	tables	under	a	schema	called	HR	for	human	resources.
The	difference	between	a	regular	database	user	and	a	schema	owner	is	that	a	schema
owner	owns	objects	within	the	database,	whereas	most	users	do	not	own	objects.	Most
users	are	given	database	accounts	to	access	data	that	is	contained	in	other	schemas.
Because	the	schema	owner	actually	owns	these	objects,	he	has	complete	control	over
them.

Microsoft	SQL	Server	actually	goes	one	step	further	by	having	a	database	owner.	The
database	owner	basically	owns	all	objects	within	the	database	and	has	complete	control
over	everything	stored	within.	Within	the	database	are	one	or	more	schemas.	The	default
schema	is	always	dbo	and	is	normally	the	default	for	the	database	owner.	There	may	be	as
many	schemas	as	necessary	to	logically	group	the	database	objects	and	assign	schema
owners.

The	Management	Process
A	stable	user	management	system	is	mandatory	for	data	security	in	any	database	system.
The	user	management	system	starts	with	the	new	user’s	immediate	supervisor,	who	should
initiate	the	access	request	and	then	go	through	the	company’s	approval	authorities.	If
management	accepts	the	request,	it	is	routed	to	the	security	officer	or	database
administrator,	who	takes	action.	A	good	notification	process	is	necessary;	the	supervisor
and	the	user	must	be	notified	that	the	user	account	has	been	created	and	that	access	to	the
database	has	been	granted.	The	user	account	password	should	be	given	only	to	the	user,
who	should	immediately	change	the	password	upon	initial	login	to	the	database.

Creating	Users
The	creation	of	database	users	involves	the	use	of	SQL	commands	within	the	database.
There	is	no	one	standard	command	for	creating	database	users	in	SQL;	each
implementation	has	a	method	for	doing	so.	The	basic	concept	is	the	same,	regardless	of
the	implementation.	There	are	several	graphical	user	interface	(GUI)	tools	on	the	market
that	can	be	used	for	user	management.

When	the	DBA	or	assigned	security	officer	receives	a	user	account	request,	the	request
should	be	analyzed	for	the	necessary	information.	The	information	should	include	the
company’s	particular	requirements	for	establishing	a	user	account.

Some	items	that	should	be	included	are	Social	Security	number,	full	name,	address,	phone
number,	office	or	department	name,	assigned	database,	and,	sometimes,	a	suggested	user
account	name.

Note:	User	Creation	and	Management	Varies	Between	Systems

You	must	check	your	particular	implementation	for	the	creation	of	users.	Also	refer
to	company	policies	and	procedures	when	creating	and	managing	users.	The
following	section	compares	the	user	creation	processes	in	Oracle,	MySQL,	and
Microsoft	SQL	Server.

Creating	Users	in	Oracle

Following	are	the	steps	for	creating	a	user	account	in	an	Oracle	database:

1.	Create	the	database	user	account	with	default	settings.

2.	Grant	appropriate	privileges	to	the	user	account.

The	following	is	the	syntax	for	creating	a	user:
Click	here	to	view	code	image

CREATE	USER	USER_ID
IDENTIFIED	BY	[PASSWORD	|	EXTERNALLY]
[DEFAULT	TABLESPACE	TABLESPACE_NAME]
[TEMPORARY	TABLESPACE	TABLESPACE_NAME]
[QUOTA	(INTEGER	(K	|	M)	|	UNLIMITED)	ON	TABLESPACE_NAME]
[PROFILE	PROFILE_TYPE]
[PASSWORD	EXPIRE	|ACCOUNT	[LOCK	|	UNLOCK]

If	you	are	not	using	Oracle,	do	not	overly	concern	yourself	with	some	of	the	options	in
this	syntax.	A	tablespace	is	a	logical	area	managed	by	the	DBA	that	houses	database
objects,	such	as	tables	and	indexes.	The	DEFAULT	TABLESPACE	is	the	tablespace	in
which	objects	created	by	the	particular	user	reside.	The	TEMPORARY	TABLESPACE	is
the	tablespace	used	for	sort	operations	(table	joins,	ORDER	BY,	GROUP	BY)	from	queries
the	user	executes.	The	QUOTA	is	the	space	limit	placed	on	a	particular	tablespace	to	which
the	user	has	access.	PROFILE	is	a	particular	database	profile	that	has	been	assigned	to	the
user.

The	following	is	the	syntax	for	granting	privileges	to	the	user	account:
Click	here	to	view	code	image

GRANT	PRIV1	[,	PRIV2,	…]	TO	USERNAME	|	ROLE	[,	USERNAME]

Note:	Implementation	Differences	for	CREATE	USER

MySQL	does	not	support	the	CREATE	USER	command.	Users	can	be	managed
using	the	mysqladmin	tool.	After	a	local	user	account	is	set	up	on	a	Windows
computer,	a	login	is	not	required.	However,	you	should	set	up	a	user	for	each	user
requiring	access	to	the	database	in	a	multiuser	environment	using	mysqladmin.

The	GRANT	statement	can	grant	one	or	more	privileges	to	one	or	more	users	in	the	same
statement.	The	privilege(s)	can	also	be	granted	to	a	role,	which	in	turn	can	be	granted	to	a
user(s).

In	MySQL,	the	GRANT	command	can	grant	users	access	on	the	local	computer	to	the
current	database.	For	example:
Click	here	to	view	code	image

GRANT	USAGE	ON	*.*	TO	USER@LOCALHOST	IDENTIFIED	BY	‘PASSWORD’;

Additional	privileges	can	be	granted	to	a	user	as	follows:
Click	here	to	view	code	image

GRANT	SELECT	ON	TABLENAME	TO	USER@LOCALHOST;

For	the	most	part,	multiuser	setup	and	access	for	MySQL	is	required	only	in	multiuser
environments.

Creating	Users	in	Microsoft	SQL	Server

The	steps	for	creating	a	user	account	in	a	Microsoft	SQL	Server	database	follow:

1.	Create	the	login	user	account	for	SQL	Server,	and	assign	a	password	and	a	default
database	for	the	user.

2.	Add	the	user	to	the	appropriate	database(s)	so	that	a	database	user	account	is
created.

3.	Grant	appropriate	privileges	to	the	database	user	account.	The	discussion	of
privileges	within	a	relational	database	is	further	elaborated	on	in	Hour	19,
“Managing	Database	Security.”

Following	is	the	syntax	for	creating	the	user	account:
Click	here	to	view	code	image

SP_ADDLOGIN	USER_ID	,PASSWORD	[,	DEFAULT_DATABASE]

Following	is	the	syntax	for	adding	the	user	to	a	database:
Click	here	to	view	code	image

SP_ADDUSER	USER_ID	[,	NAME_IN_DB	[,	GRPNAME]]

As	you	can	see,	SQL	Server	distinguishes	between	a	login	account	that	is	granted	access
to	log	in	to	the	SQL	Server	instance	and	a	database	user	account	that	grants	access	to
database	objects.	You	can	view	this	by	looking	at	the	security	folders	in	SQL	Server
Management	Studio	after	you	create	the	login	account	and	then	at	the	database	level	when
you	issue	the	SP_ADDUSER	command.	This	is	an	important	distinction	with	SQL	Server
because	you	can	create	a	login	account	that	does	not	have	access	to	any	of	the	databases
on	the	instance.

A	common	error	when	creating	accounts	on	SQL	Server	is	forgetting	to	assign	them
access	to	their	default	database.	So	when	you	set	up	accounts,	ensure	that	they	have	access
to	at	least	their	default	database,	or	you	might	be	setting	up	the	users	to	receive	an	error
when	logging	into	your	system.

Following	is	the	syntax	for	granting	privileges	to	the	user	account:
Click	here	to	view	code	image

GRANT	PRIV1	[,	PRIV2,	…]	TO	USER_ID

Creating	Users	in	MySQL

The	steps	for	creating	a	user	account	in	MySQL	follow:

1.	Create	the	user	account	within	the	database.

2.	Grant	the	appropriate	privileges	to	the	user	account.

The	syntax	for	creating	the	user	account	is	similar	to	the	syntax	used	in	Oracle:
Click	here	to	view	code	image

SELECT	USER	user	[IDENTIFIED	BY	[PASSWORD]	‘password‘]

The	syntax	for	granting	the	user’s	privileges	is	also	similar	to	the	Oracle	version:
Click	here	to	view	code	image

GRANT	priv_type	[(column_list)]	[,	priv_type	[(column_list)]]	…
				ON	[object_type]
								{tbl_name	|	*	|	*.*	|	db_name.*	|	db_name.routine_name}
							TO	user

Creating	Schemas
Schemas	are	created	via	the	CREATE	SCHEMA	statement.

The	syntax	follows:
Click	here	to	view	code	image

CREATE	SCHEMA	[SCHEMA_NAME]	[USER_ID]

														[DEFAULT	CHARACTER	SET	CHARACTER_SET]
														[PATH	SCHEMA	NAME	[,SCHEMA	NAME]]
														[SCHEMA_ELEMENT_LIST]

Following	is	an	example:
Click	here	to	view	code	image

CREATE	SCHEMA	USER1
CREATE	TABLE	TBL1
		(COLUMN1				DATATYPE				[NOT	NULL],
			COLUMN2				DATATYPE				[NOT	NULL]…)
CREATE	TABLE	TBL2
		(COLUMN1				DATATYPE				[NOT	NULL],
			COLUMN2				DATATYPE				[NOT	NULL]…)
GRANT	SELECT	ON	TBL1	TO	USER2
GRANT	SELECT	ON	TBL2	TO	USER2
[OTHER	DDL	COMMANDS	…]

Following	is	the	application	of	the	CREATE	SCHEMA	command	in	one	implementation:
Click	here	to	view	code	image

CREATE	SCHEMA	AUTHORIZATION	USER1
CREATE	TABLE	EMP
		(ID						NUMBER										NOT	NULL,
			NAME				VARCHAR2(10)				NOT	NULL)
CREATE	TABLE	CUST
		(ID						NUMBER										NOT	NULL,
			NAME				VARCHAR2(10)				NOT	NULL)
GRANT	SELECT	ON	TBL1	TO	USER2
GRANT	SELECT	ON	TBL2	TO	USER2;
Schema	created.

The	AUTHORIZATION	keyword	is	added	to	the	CREATE	SCHEMA	command.	This
example	was	performed	in	an	Oracle	database.	This	shows	you	(as	you	have	also	seen	in
this	book’s	previous	examples)	that	vendors’	syntax	for	commands	often	varies	in	their
implementations.

Implementations	that	do	support	the	creation	of	schemas	often	assign	a	default	schema	to
a	user.	Most	often	this	is	aligned	with	the	user’s	account.	So	a	user	with	the	account
BethA2	normally	has	a	default	schema	of	BethA2.	This	is	important	to	remember	because
objects	are	created	in	the	user’s	default	schema	unless	otherwise	directed	by	providing	a
schema	name	at	the	time	of	creation.	If	you	issue	the	following	CREATE	TABLE
statement	using	BethA2’s	account,	it	is	created	in	the	BethA2	schema:
Click	here	to	view	code	image

CREATE	TABLE	MYTABLE(
		NAME	VARCHAR(50)		NOT	NULL);

This	might	not	be	the	wanted	location.	If	this	is	SQL	Server,	you	might	have	permissions
to	the	dbo	schema	and	want	to	create	it	there.	In	that	case,	you	need	to	qualify	your	object
with	the	schema	as	shown	here:
Click	here	to	view	code	image

CREATE	TABLE	DBO.MYTABLE(
		NAME	VARCHAR(50)	NOT	NULL):

It	is	important	to	remember	these	caveats	when	creating	users	and	assigning	them
permissions	so	that	you	can	maintain	proper	order	within	your	database	systems	without

having	unintended	consequences.

Caution:	CREATE	SCHEMA	Is	Not	Always	Supported

Some	implementations	might	not	support	the	CREATE	SCHEMA	command.
However,	schemas	can	be	implicitly	created	when	a	user	creates	objects.	The
CREATE	SCHEMA	command	is	simply	a	method	for	accomplishing	this	task	in	a
single	step.	After	a	user	creates	objects,	the	user	can	grant	privileges	that	allow
access	to	the	user’s	objects	to	other	users.

MySQL	does	not	support	the	CREATE	SCHEMA	command.	A	schema	in	MySQL	is
considered	to	be	a	database.	So	you	use	the	CREATE	DATABASE	command	to
essentially	create	a	schema	to	populate	with	objects.

Dropping	a	Schema
You	can	remove	a	schema	from	the	database	using	the	DROP	SCHEMA	statement.	You
must	consider	two	things	when	dropping	a	schema:	the	RESTRICT	option	and	the
CASCADE	option.	If	RESTRICT	is	specified,	an	error	occurs	if	objects	currently	exist	in
the	schema.	You	must	use	the	CASCADE	option	if	any	objects	currently	exist	in	the
schema.	Remember	that	when	you	drop	a	schema,	you	also	drop	all	database	objects
associated	with	that	schema.

The	syntax	follows:
Click	here	to	view	code	image

DROP	SCHEMA	SCHEMA_NAME	{	RESTRICT	|	CASCADE	}

Note:	There	Are	Different	Ways	to	Remove	a	Schema

The	absence	of	objects	in	a	schema	is	possible	because	objects,	such	as	tables,	can
be	dropped	using	the	DROP	TABLE	command.	Some	implementations	have	a
procedure	or	command	that	drops	a	user	and	can	also	drop	a	schema.	If	the	DROP
SCHEMA	command	is	not	available	in	your	implementation,	you	can	remove	a
schema	by	removing	the	user	who	owns	the	schema	objects.

Altering	Users
An	important	part	of	managing	users	is	the	ability	to	alter	a	user’s	attributes	after	user
creation.	Life	for	the	DBA	would	be	a	lot	simpler	if	personnel	with	user	accounts	were
never	promoted,	never	left	the	company,	or	if	the	addition	of	new	employees	were
minimized.	In	the	real	world,	high	personnel	turnover	and	changes	in	users’
responsibilities	are	a	reality	and	a	significant	factor	in	user	management.	Nearly	everyone
changes	jobs	or	job	duties.	Therefore,	user	privileges	in	a	database	must	be	adjusted	to	fit
a	user’s	needs.

Following	is	an	example	of	altering	the	current	state	of	a	user	in	Oracle:
Click	here	to	view	code	image

ALTER	USER	USER_ID	[IDENTIFIED	BY	PASSWORD	|	EXTERNALLY	|GLOBALLY	AS
‘CN=USER’]
[DEFAULT	TABLESPACE	TABLESPACE_NAME]
[TEMPORARY	TABLESPACE	TABLESPACE_NAME]
[QUOTA		INTEGER	K|M	|UNLIMITED	ON	TABLESPACE_NAME]
[PROFILE	PROFILE_NAME]
[PASSWORD	EXPIRE]
[ACCOUNT	[LOCK	|UNLOCK]]
[DEFAULT	ROLE	ROLE1	[,	ROLE2]	|	ALL
[EXCEPT	ROLE1	[,	ROLE2	|	NONE]]

You	can	alter	many	of	the	user’s	attributes	in	this	syntax.	Unfortunately,	not	all
implementations	provide	a	simple	command	that	allows	the	manipulation	of	database
users.

MySQL,	for	instance,	uses	several	means	to	modify	the	user	account.	For	example,	you
use	the	following	syntax	to	reset	the	user’s	password	in	MySQL:
Click	here	to	view	code	image

UPDATE	mysql.user	SET	Password=PASSWORD(‘new	password’)
WHERE	user=‘username’;

In	addition,	you	might	want	to	change	the	username	for	the	user.	You	could	accomplish
this	with	the	following	syntax:
Click	here	to	view	code	image

RENAME	USER	old_username	TO	new_username;

Some	implementations	also	provide	GUI	tools	that	enable	you	to	create,	modify,	and
remove	users.

User	Sessions
A	user	database	session	is	the	time	between	when	a	database	user	logs	in	and	when	the
user	logs	out.	During	the	user	session,	the	user	can	perform	various	actions	that	have	been
granted,	such	as	queries	and	transactions.

Upon	the	establishment	of	the	connection	and	the	initiation	of	the	session,	the	user	can
start	and	perform	any	number	of	transactions	until	the	connection	is	disconnected;	at	that
time,	the	database	user	session	terminates.

Users	can	explicitly	connect	and	disconnect	from	the	database,	starting	and	terminating
SQL	sessions,	using	commands	such	as	the	following:
Click	here	to	view	code	image

CONNECT	TO	DEFAULT	|	STRING1	[AS	STRING2]	[USER	STRING3]
DISCONNECT	DEFAULT	|	CURRENT	|	ALL	|	STRING
SET	CONNECTION	DEFAULT	|	STRING

User	sessions	can	be—and	often	are—monitored	by	the	DBA	or	other	personnel	having
interest	in	user	activities.	A	user	session	is	associated	with	a	particular	user	account	when
a	user	is	monitored.	A	database	user	session	is	ultimately	represented	as	a	process	on	the
host	operating	system.

Note:	Some	Databases	and	Tools	Obscure	the	Underlying	Commands

Remember	that	the	syntax	varies	between	implementations.	In	addition,	most
database	users	do	not	manually	issue	the	commands	to	connect	or	disconnect	from
the	database.	Most	users	access	the	database	through	a	vendor-provided	or	third-
party	tool	that	prompts	the	user	for	a	username	and	password,	which	in	turn
connects	to	the	database	and	initiates	a	database	user	session.

Removing	User	Access
You	can	remove	a	user	from	the	database	or	disallow	a	user’s	access	through	a	couple	of
simple	commands.	Again,	however,	variations	among	implementations	are	numerous,	so
you	must	check	your	particular	implementation	for	the	syntax	or	tools	to	accomplish	user
removal	or	access	revocation.

Following	are	methods	for	removing	user	database	access:

	Change	the	user’s	password.

	Drop	the	user	account	from	the	database.

	Revoke	appropriate	previously	granted	privileges	from	the	user.

You	can	use	the	DROP	command	in	some	implementations	to	drop	a	user	from	the
database:
Click	here	to	view	code	image

DROP	USER	USER_ID	[CASCADE]

The	REVOKE	command	is	the	counterpart	of	the	GRANT	command	in	many
implementations,	allowing	privileges	that	have	been	granted	to	a	user	to	be	revoked.	An
example	syntax	for	this	command	for	SQL	Server,	Oracle,	and	MySQL	follows:
Click	here	to	view	code	image

REVOKE	PRIV1	[,PRIV2,	…]	FROM	USERNAME

Tools	Utilized	by	Database	Users
Some	people	say	that	you	do	not	need	to	know	SQL	to	perform	database	queries.	In	a
sense,	they	are	correct;	however,	knowing	SQL	definitely	helps	when	querying	a	database,
even	when	using	GUI	tools.	Even	though	GUI	tools	are	good	and	should	be	used	when
available,	it	is	beneficial	to	understand	what	happens	behind	the	scenes	so	that	you	can
maximize	the	efficiency	of	utilizing	these	user-friendly	tools.

Many	GUI	tools	that	aid	the	database	user	automatically	generate	SQL	code	by	navigating
through	windows,	responding	to	prompts,	and	selecting	options.	Reporting	tools	generate
reports.	Forms	can	be	created	for	users	to	query,	update,	insert,	or	delete	data	from	a
database.	Tools	can	convert	data	into	graphs	and	charts.	Certain	database	administration
tools	monitor	database	performance,	and	others	allow	remote	connectivity	to	a	database.
Database	vendors	provide	some	of	these	tools,	whereas	others	are	provided	as	third-party
tools	from	other	vendors.

Summary
As	you	learned	in	this	hour,	all	databases	have	users,	whether	one	or	thousands.	The	user
is	the	reason	for	the	database.

There	are	three	necessities	for	managing	users	in	the	database.	First,	you	must	create
database	user	accounts	for	the	proper	individuals	and	services.	Second,	you	must	grant
privileges	to	the	accounts	to	accommodate	the	tasks	that	must	be	performed	within	the
database.	Finally,	you	must	either	remove	a	user	account	from	the	database	or	revoke
certain	privileges	within	the	database	from	an	account.

Some	of	the	most	common	tasks	of	managing	users	have	been	touched	on;	much	detail	is
avoided	here	because	most	databases	differ	in	how	users	are	managed.	However,	it	is
important	to	discuss	user	management	due	to	its	relationship	with	SQL.	The	American
National	Standards	Institute	(ANSI)	has	not	defined	or	discussed	in	detail	many	of	the
commands	to	manage	users,	but	the	concept	remains	the	same.

Q&A
Q.	Is	there	a	SQL	standard	for	adding	users	to	a	database?

A.	ANSI	provides	some	commands	and	concepts;	although	each	implementation	and
each	company	has	its	own	commands,	tools,	and	rules	for	creating	or	adding	users	to
a	database.

Q.	Can	user	access	be	temporarily	suspended	without	removing	the	user	ID
completely	from	the	database?

A.	Yes,	you	can	temporarily	suspend	user	access	by	simply	changing	the	user’s
password	or	revoking	privileges	that	allow	the	user	to	connect	to	the	database.	You
can	reinstate	the	functionality	of	the	user	account	by	changing	and	issuing	the
password	to	the	user	or	granting	privileges	to	the	user	that	might	have	been	revoked.

Q.	Can	a	user	change	his	own	password?

A.	Yes,	in	most	major	implementations.	Upon	user	creation	or	addition	to	the	database,
a	generic	password	is	given	to	the	user,	who	must	change	it	as	quickly	as	possible	to
a	password	of	his	choice.	After	the	user	changes	his	password,	even	the	DBA	does
not	know	the	new	password.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	Which	command	establishes	a	session?

2.	Which	option	drops	a	schema	that	still	contains	database	objects?

3.	Which	command	in	MySQL	creates	a	schema?

4.	Which	statement	removes	a	database	privilege?

5.	Which	command	creates	a	grouping	or	collection	of	tables,	views,	and	privileges?

6.	What	is	the	difference	in	SQL	Server	between	a	login	account	and	a	database	user
account?

Exercises
1.	Describe	how	you	would	create	a	new	user	'John'	in	your	CANARYAIRLINES
database.

2.	Explain	the	steps	you	would	take	to	grant	access	to	the	EMPLOYEES	table	to	your
new	user	'John'.

3.	Describe	how	you	would	assign	permissions	to	all	objects	within	the
CANARYAIRLINES	database	to	'John'.

4.	Describe	how	you	would	revoke	the	previous	privileges	from	'John'	and	then
remove	his	account.

Hour	19.	Managing	Database	Security

What	You’ll	Learn	in	This	Hour:

	Definition	of	database	security

	Security	versus	user	management

	Database	system	privileges

	Database	object	privileges

	Granting	privileges	to	users

	Revoking	privileges	from	users

	Security	features	in	the	database

In	this	hour,	you	learn	the	basics	of	implementing	and	managing	security	within	a
relational	database	using	SQL	and	SQL-related	commands.	Each	major	implementation
differs	on	syntax	with	its	security	commands,	but	the	overall	security	for	the	relational
database	follows	the	same	basic	guidelines	discussed	in	the	ANSI	standard.	You	must
check	your	particular	implementation	for	syntax	and	any	special	guidelines	for	security.

What	Is	Database	Security?
Database	security	is	simply	the	process	of	protecting	the	data	from	unauthorized	usage.
Unauthorized	usage	includes	data	access	by	database	users	who	should	have	access	to	part
of	the	database,	but	not	all	parts.	This	protection	also	includes	the	act	of	policing	against
unauthorized	connectivity	and	distribution	of	privileges.	Many	user	levels	exist	in	a
database,	from	the	database	creator	to	individuals	responsible	for	maintaining	the	database
(such	as	the	database	administrator	[DBA])	to	database	programmers	to	end	users.
Although	end	users	have	the	most	limited	access,	they	are	the	users	for	which	the	database
exists.	A	user	should	be	granted	the	fewest	number	of	privileges	needed	to	perform	his
particular	job.

You	might	be	wondering	what	the	difference	is	between	user	management	and	database
security.	After	all,	the	previous	hour	discussed	user	management,	which	seems	to	cover
security.	Although	user	management	and	database	security	are	definitely	related,	each	has
its	own	purpose,	and	the	two	work	together	to	achieve	a	secure	database.

A	well-planned	and	maintained	user	management	program	goes	hand	in	hand	with	the
overall	security	of	a	database.	Users	are	assigned	user	accounts	and	passwords	that	give
them	general	access	to	the	database.	The	user	accounts	within	the	database	should	be
stored	with	information,	such	as	the	user’s	actual	name,	the	office	and	department	in
which	the	user	works,	a	telephone	number	or	extension,	and	the	database	name	to	which
the	user	has	access.	Personal	user	information	should	be	accessible	only	to	the	DBA.	A
DBA	or	security	officer	assigns	an	initial	password	for	the	database	user;	the	user	should
change	this	password	immediately.	Remember	that	the	DBA	does	not	need,	and	should	not
want	to	know,	the	individual’s	password.	This	ensures	a	separation	of	duties	and	protects

the	DBA’s	integrity	should	problems	with	a	user’s	account	arise.

If	a	user	no	longer	requires	certain	privileges	granted	to	her,	those	privileges	should	be
revoked.	If	a	user	no	longer	requires	access	to	the	database,	the	user	account	should	be
dropped	from	the	database.

Generally,	user	management	is	the	process	of	creating	user	accounts,	removing	user
accounts,	and	keeping	track	of	users’	actions	within	the	database.	Database	security	goes	a
step	further	by	granting	privileges	for	specific	database	access,	revoking	certain	privileges
from	users,	and	taking	measures	to	protect	other	parts	of	the	database,	such	as	the
underlying	database	files.

What	Are	Privileges?
Privileges	are	authority	levels	used	to	access	the	database,	access	objects	within	the
database,	manipulate	data	in	the	database,	and	perform	various	administrative	functions
within	the	database.	Privileges	are	issued	via	the	GRANT	command	and	are	taken	away	via
the	REVOKE	command.

Just	because	a	user	can	connect	to	a	database	does	not	mean	that	the	user	can	access	data
within	a	database.	Access	to	data	within	the	database	is	handled	through	these	privileges.
The	two	types	of	privileges	are	system	privileges	and	object	privileges.

Note:	There	Are	More	Aspects	to	Database	Security	Than	Privileges

Because	this	is	a	SQL	book,	not	a	database	book,	it	focuses	on	database	privileges.
However,	you	should	keep	in	mind	other	aspects	to	database	security,	such	as	the
protection	of	underlying	database	files,	which	holds	equal	importance	with	the
distribution	of	database	privileges.	High-level	database	security	can	become
complex	and	differs	immensely	among	relational	database	implementations.	If	you
would	like	to	learn	more	about	database	security,	you	can	find	information	on	The
Center	for	Internet	Security’s	web	page:	www.cisecurity.org/.

System	Privileges
System	privileges	are	those	that	allow	database	users	to	perform	administrative	actions
within	the	database,	such	as	creating	a	database,	dropping	a	database,	creating	user
accounts,	dropping	users,	dropping	and	altering	database	objects,	altering	the	state	of
objects,	altering	the	state	of	the	database,	and	other	actions	that	could	result	in	serious
repercussions	if	not	carefully	used.

System	privileges	vary	greatly	among	the	different	relational	database	vendors,	so	you
must	check	your	particular	implementation	for	all	the	available	system	privileges	and	their
correct	usage.

Following	are	some	common	system	privileges	in	SQL	Server:

	CREATE	DATABASE—Allows	for	the	creation	of	a	new	database

	CREATE	PROCEDURE—Allows	for	the	creation	of	stored	procedures

http://www.cisecurity.org/

	CREATE	VIEW—Allows	for	the	creation	of	views

	BACKUP	DATABASE—Allows	the	user	to	control	backup	of	the	database	system

	CREATE	TABLE—Allows	the	user	to	create	new	tables

	CREATE	TRIGGER—Allows	the	user	to	create	triggers	on	tables

	EXECUTE—Allows	the	user	to	execute	given	stored	procedures	within	the	specific
database

Following	are	some	common	system	privileges	in	Oracle:

	CREATE	TABLE—Allows	the	user	to	create	new	tables	in	the	specified	schema

	CREATE	ANY	TABLE—Allows	the	user	to	create	tables	in	any	schema

	ALTER	ANY	TABLE—Allows	the	user	to	alter	table	structure	in	any	schema

	DROP	TABLE—Allows	the	user	to	drop	table	objects	in	the	specified	schema

	CREATE	USER—Allows	the	user	to	create	other	user	accounts

	DROP	USER—Allows	the	user	to	drop	existing	user	accounts

	ALTER	USER—Allows	the	user	to	make	alterations	to	existing	user	accounts

	ALTER	DATABASE—Allows	the	user	to	alter	database	properties

	BACKUP	ANY	TABLE—Allows	the	user	to	backup	data	from	any	table	in	any
schema

	SELECT	ANY	TABLE—Allows	the	user	to	perform	a	select	on	any	table	from	any
schema

Object	Privileges
Object	privileges	are	authority	levels	on	objects,	meaning	you	must	have	been	granted	the
appropriate	privileges	to	perform	certain	operations	on	database	objects.	For	example,	to
select	data	from	another	user’s	table,	the	user	must	first	grant	you	access	to	do	so.	Object
privileges	are	granted	to	users	in	the	database	by	the	object’s	owner.	Remember	that	this
owner	is	also	called	the	schema	owner.

The	ANSI	standard	for	privileges	includes	the	following	object	privileges:

	USAGE—Authorizes	usage	of	a	specific	domain

	SELECT—Allows	access	to	a	specific	table

	INSERT(column_name)—Allows	data	insertion	to	a	specific	column	of	a
specified	table

	INSERT—Allows	insertion	of	data	into	all	columns	of	a	specific	table

	UPDATE(column_name)—Allows	a	specific	column	of	a	specified	table	to	be
updated

	UPDATE—Allows	all	columns	of	a	specified	table	to	be	updated

	REFERENCES(column_name)—Allows	a	reference	to	a	specified	column	of	a
specified	table	in	integrity	constraints;	this	privilege	is	required	for	all	integrity
constraints

	REFERENCES—Allows	references	to	all	columns	of	a	specified	table

Tip:	Some	Privileges	Are	Granted	Automatically

The	owner	of	an	object	has	been	automatically	granted	all	privileges	that	relate	to
the	objects	owned.	These	privileges	have	also	been	granted	with	the	GRANT
OPTION,	which	is	a	nice	feature	available	in	some	SQL	implementations.	This
feature	is	discussed	in	the	“GRANT	OPTION”	section	later	this	hour.

Most	implementations	of	SQL	adhere	to	the	standard	list	of	object	privileges	for
controlling	access	to	database	objects.

You	should	use	these	object-level	privileges	to	grant	and	restrict	access	to	objects	in	a
schema.	These	privileges	can	protect	objects	in	one	schema	from	database	users	who	have
access	to	another	schema	in	the	same	database.

A	variety	of	other	object	privileges	available	among	different	implementations	are	not
listed	in	this	section.	The	capability	to	delete	data	from	another	user’s	object	is	another
common	object	privilege	available	in	many	implementations.	Be	sure	to	check	your
implementation	documentation	for	all	the	available	object-level	privileges.

Who	Grants	and	Revokes	Privileges?
The	DBA	is	usually	the	one	who	issues	the	GRANT	and	REVOKE	commands;	although	a
security	administrator,	if	one	exists,	might	have	the	authority	to	do	so.	The	authority	on
what	to	grant	or	revoke	would	come	from	management	and	normally	should	be	carefully
tracked	to	ensure	that	only	authorized	individuals	are	allowed	access	to	these	types	of
permissions.

The	owner	of	an	object	must	grant	privileges	to	other	users	in	the	database	on	the	object.
Even	the	DBA	cannot	grant	database	users	privileges	on	objects	that	do	not	belong	to	the
DBA;	although	there	are	ways	to	work	around	that.

Controlling	User	Access
User	access	is	primarily	controlled	by	a	user	account	and	password,	but	that	is	not	enough
to	access	the	database	in	most	major	implementations.	The	creation	of	a	user	account	is
only	the	first	step	in	allowing	and	controlling	access	to	the	database.

After	the	user	account	has	been	created,	the	database	administrator,	security	officer,	or
designated	individual	must	assign	appropriate	system-level	privileges	to	a	user	for	that
user	to	perform	actual	functions	within	the	database,	such	as	creating	tables	or	selecting
from	tables.	Furthermore,	the	schema	owner	usually	needs	to	grant	database	users	access
to	objects	in	the	schema	so	that	the	user	can	do	his	job.

Two	commands	in	SQL	allow	database	access	control	involving	the	assignment	of
privileges	and	the	revocation	of	privileges.	The	GRANT	and	REVOKE	commands	distribute
both	system	and	object	privileges	in	a	relational	database.

The	GRANT	Command
The	GRANT	command	grants	both	system-level	and	object-level	privileges	to	an	existing
database	user	account.

The	syntax	follows:
Click	here	to	view	code	image

GRANT	PRIVILEGE1	[,	PRIVILEGE2][ON	OBJECT]
TO	USERNAME	[WITH	GRANT	OPTION	|	ADMIN	OPTION]

Syntax	for	granting	one	privilege	to	a	user	follows:
Click	here	to	view	code	image

GRANT	SELECT	ON	EMPLOYEES	TO	USER1;

Grant	succeeded.

Syntax	for	granting	multiple	privileges	to	a	user	follows:
Click	here	to	view	code	image

GRANT	SELECT,	INSERT	ON	EMPLOYEES	TO	USER1;

Grant	succeeded.

Notice	that	when	granting	multiple	privileges	to	a	user	in	a	single	statement,	each
privilege	is	separated	by	a	comma.

Syntax	for	granting	privileges	to	multiple	users	follows:
Click	here	to	view	code	image

GRANT	SELECT,	INSERT	ON	EMPLOYEES	TO	USER1,	USER2;

Grant	succeeded.

Note:	Be	Sure	to	Understand	the	Feedback	the	System	Gives	You

Notice	the	phrase	Grant	succeeded,	denoting	the	successful	completion	of
each	GRANT	statement.	This	is	the	feedback	that	you	receive	when	you	issue	these
statements	in	the	implementation	used	for	the	book	examples	(Oracle).	Most
implementations	have	some	sort	of	feedback;	although	the	phrase	used	might	vary.

GRANT	OPTION

GRANT	OPTION	is	a	powerful	GRANT	command	option.	When	an	object’s	owner	grants
privileges	on	an	object	to	another	user	with	GRANT	OPTION,	the	new	user	can	also	grant
privileges	on	that	object	to	other	users,	even	though	the	user	does	not	actually	own	the
object.	An	example	follows:
Click	here	to	view	code	image

GRANT	SELECT	ON	EMPLOYEES	TO	USER1	WITH	GRANT	OPTION;

Grant	succeeded.

ADMIN	OPTION

ADMIN	OPTION	is	similar	to	GRANT	OPTION	in	that	the	user	who	has	been	granted	the
privileges	also	inherits	the	ability	to	grant	those	privileges	to	another	user.	GRANT
OPTION	is	used	for	object-level	privileges,	whereas	ADMIN	OPTION	is	used	for	system-
level	privileges.	When	a	user	grants	system	privileges	to	another	user	with	ADMIN
OPTION,	the	new	user	can	also	grant	the	system-level	privileges	to	any	other	user.	An
example	follows:
Click	here	to	view	code	image

GRANT	CREATE	TABLE	TO	USER1	WITH	ADMIN	OPTION;

Grant	succeeded.

Caution:	Dropping	a	User	Can	Drop	Granted	Privileges

When	a	user	who	has	granted	privileges	using	either	GRANT	OPTION	or	ADMIN
OPTION	has	been	dropped	from	the	database,	the	privileges	that	the	user	granted
are	disassociated	with	the	users	to	whom	the	privileges	were	granted.

The	REVOKE	Command
The	REVOKE	command	removes	privileges	that	have	been	granted	to	database	users.	The
REVOKE	command	has	two	options:	RESTRICT	and	CASCADE.	When	the	RESTRICT
option	is	used,	REVOKE	succeeds	only	if	the	privileges	specified	explicitly	in	the	REVOKE
statement	leave	no	other	users	with	abandoned	privileges.	The	CASCADE	option	revokes
any	privileges	that	would	otherwise	be	left	with	other	users.	In	other	words,	if	the	owner
of	an	object	granted	USER1	privileges	with	GRANT	OPTION,	USER1	granted	USER2
privileges	with	GRANT	OPTION,	and	then	the	owner	revokes	USER1’s	privileges,
CASCADE	also	removes	the	privileges	from	USER2.

Abandoned	privileges	are	privileges	that	are	left	with	a	user	who	was	granted	privileges
with	the	GRANT	OPTION	from	a	user	who	has	been	dropped	from	the	database	or	had
her	privileges	revoked.

The	syntax	for	REVOKE	follows:
Click	here	to	view	code	image

REVOKE	PRIVILEGE1	[,	PRIVILEGE2]	[GRANT	OPTION	FOR]	ON	OBJECT
FROM	USER	{	RESTRICT	|	CASCADE	}

Following	is	an	example:
Click	here	to	view	code	image

REVOKE	INSERT	ON	EMPLOYEES	FROM	USER1;

Revoke	succeeded.

Controlling	Access	on	Individual	Columns
Instead	of	granting	object	privileges	(INSERT,	UPDATE,	or	DELETE)	on	a	table	as	a
whole,	you	can	grant	privileges	on	specific	columns	in	the	table	to	restrict	user	access,	as
shown	in	the	following	example:

Click	here	to	view	code	image

GRANT	UPDATE	(NAME)	ON	EMPLOYEES	TO	PUBLIC;

Grant	succeeded.

The	PUBLIC	Database	Account
The	PUBLIC	database	user	account	is	a	database	account	that	represents	all	users	in	the
database.	All	users	are	part	of	the	PUBLIC	account.	If	a	privilege	is	granted	to	the
PUBLIC	account,	all	database	users	have	the	privilege.	Likewise,	if	a	privilege	is	revoked
from	the	PUBLIC	account,	the	privilege	is	revoked	from	all	database	users,	unless	that
privilege	was	explicitly	granted	to	a	specific	user.	Following	is	an	example:
Click	here	to	view	code	image

GRANT	SELECT	ON	EMPLOYEES	TO	PUBLIC;

Grant	succeeded.

Caution:	PUBLIC	Privileges	Can	Grant	Unintended	Access

Use	extreme	caution	when	granting	privileges	to	PUBLIC;	all	database	users
acquire	the	privileges	granted.	Therefore,	by	granting	permissions	to	PUBLIC,	you
might	unintentionally	give	access	to	data	to	users	who	have	no	business	accessing
it.	For	example,	giving	PUBLIC	access	to	SELECT	from	the	employee	salary	table
would	give	everyone	who	has	access	to	the	database	the	rights	to	see	what	everyone
in	the	company	is	paid!

Groups	of	Privileges
Some	implementations	have	groups	of	privileges	in	the	database.	These	groups	of
permissions	are	referred	to	with	different	names.	Having	a	group	of	privileges	allows
simplicity	for	granting	and	revoking	common	privileges	to	and	from	users.	For	example,	if
a	group	consists	of	10	privileges,	the	group	can	be	granted	to	a	user	instead	of	individually
granting	all	10	privileges.

Note:	Database	Privilege	Groups	Vary	Between	Systems

Each	implementation	differs	on	the	use	of	groups	of	database	privileges.	If
available,	this	feature	should	be	used	for	ease	of	database	security	administration.

Oracle	has	groups	of	privileges	that	are	called	roles.	Oracle	includes	the	following	groups
of	privileges	with	its	implementations:

	CONNECT—Allows	a	user	to	connect	to	the	database	and	perform	operations	on	any
database	objects	to	which	the	user	has	access.

	RESOURCE—Allows	a	user	to	create	objects,	drop	objects	he	owns,	grant	privileges
to	objects	he	owns,	and	so	on.

	DBA—Allows	a	user	to	perform	any	function	within	the	database.	The	user	can
access	any	database	object	and	perform	any	operation	with	this	group.

An	example	for	granting	a	group	of	privileges	to	a	user	follows:
GRANT	DBA	TO	USER1;

Grant	succeeded.

SQL	Server	has	several	groups	of	permissions	at	the	server	level	and	the	database	level.
Some	of	the	database	level	permission	groups	are

	DB_DDLADMIN—Allows	the	user	to	manipulate	any	of	the	objects	within	the
database	through	any	legal	data	definition	language	command

	DB_DATAREADER—Allows	the	user	to	select	from	any	of	the	tables	within	the
database	from	which	it	is	assigned

	DB_DATAWRITER—Allows	the	user	to	perform	any	data	manipulation	syntax
(INSERT,	UPDATE,	or	DELETE)	on	any	of	the	tables	within	the	database

Controlling	Privileges	Through	Roles
A	role	is	an	object	created	in	the	database	that	contains	group-like	privileges.	Roles	can
reduce	security	maintenance	by	not	having	to	grant	explicit	privileges	directly	to	a	user.
Group	privilege	management	is	much	easier	to	handle	with	roles.	A	role’s	privileges	can
be	changed,	and	such	a	change	is	transparent	to	the	user.

If	a	user	needs	SELECT	and	UPDATE	table	privileges	on	a	table	at	a	specified	time	within
an	application,	a	role	with	those	privileges	can	temporarily	be	assigned	until	the
transaction	is	complete.

When	a	role	is	created,	it	has	no	real	value	other	than	being	a	role	within	a	database.	It	can
be	granted	to	users	or	other	roles.	Say	that	a	schema	named	APP01	grants	the	SELECT
table	privilege	to	the	RECORDS_CLERK	role	on	the	EMPLOYEE_PAY	table.	Any	user	or
role	granted	the	RECORDS_CLERK	role	now	would	have	SELECT	privileges	on	the
EMPLOYEE_PAY	table.

Likewise,	if	APP01	revoked	the	SELECT	table	privilege	from	the	RECORDS_CLERK	role
on	the	EMPLOYEE_PAY	table,	any	user	or	role	granted	the	RECORDS_CLERK	role	would
no	longer	have	SELECT	privileges	on	that	table.

When	assigning	permissions	in	a	database,	ensure	that	you	think	through	what	permissions
a	user	needs	and	if	other	users	need	the	same	sets	of	permissions.	For	example,	a	set	of
accounting	tables	might	need	to	be	accessed	by	several	members	of	an	accounting	team.	In
this	case,	unless	they	each	need	drastically	different	permissions	to	these	tables,	it	is	far
easier	to	set	up	a	role,	assign	the	role	the	appropriate	conditions,	and	then	assign	the	users
to	the	role.

If	a	new	object	is	created	and	needs	to	have	permissions	granted	to	the	accounting	group,
you	can	do	it	in	one	location	instead	of	having	to	update	each	account.	Likewise,	if	the
accounting	team	brings	on	a	new	member	or	decides	someone	else	needs	the	same	access
to	its	tables,	you	have	to	assign	the	role	to	only	the	new	user	and	you	are	good	to	go.	Roles
are	an	excellent	tool	to	enable	the	DBA	to	work	smarter	and	not	harder	when	dealing	with
complex	database	security	protocols.

Note:	Roles	Are	Not	Supported	in	MySQL

MySQL	does	not	support	roles.	The	lack	of	role	usage	is	a	weakness	in	some
implementations	of	SQL.

The	CREATE	ROLE	Statement
A	role	is	created	with	the	CREATE	ROLE	statement:

CREATE	ROLE	role_name;

Granting	privileges	to	roles	is	the	same	as	granting	privileges	to	a	user,	as	shown	in	the
following	example:
Click	here	to	view	code	image

CREATE	ROLE	RECORDS_CLERK;

Role	created.
GRANT	SELECT,	INSERT,	UPDATE,	DELETE	ON	EMPLOYEE_PAY	TO	RECORDS_CLERK;

Grant	succeeded.
GRANT	RECORDS_CLERK	TO	USER1;

Grant	succeeded.

The	DROP	ROLE	Statement
A	role	is	dropped	using	the	DROP_ROLE	statement:

DROP	ROLE	role_name;

Following	is	an	example:
DROP	ROLE	RECORDS_CLERK;

Role	dropped.

The	SET	ROLE	Statement
A	role	can	be	set	for	just	the	user’s	current	SQL	session	using	the	SET_ROLE	statement:

SET	ROLE	role_name;

Following	is	an	example:
SET	ROLE	RECORDS_CLERK;

Role	set.

You	can	set	more	than	one	role	at	once:
Click	here	to	view	code	image

SET	ROLE	RECORDS_CLERK,	ROLE2,	ROLE3;

Role	set.

Note:	SET	ROLE	Is	Not	Always	Used

In	some	implementations,	such	as	Microsoft	SQL	Server	and	Oracle,	all	roles
granted	to	a	user	are	automatically	default	roles,	which	means	they	are	set	and
available	to	the	user	as	soon	as	the	user	logs	in	to	the	database.	The	SET	ROLE
syntax	here	is	shown	so	that	you	can	understand	the	ANSI	standard	for	setting	a
role.

Summary
This	hour	showed	you	the	basics	on	implementing	security	in	a	SQL	database	or	a
relational	database.	After	a	user	is	created,	the	user	must	be	assigned	certain	privileges
that	allow	her	access	to	specific	parts	of	the	database.	ANSI	allows	the	use	of	roles	as
discussed	during	this	hour.	Privileges	can	be	granted	to	users	or	roles.

The	two	types	of	privileges	are	system	and	object.	System	privileges	are	those	that	allow
the	user	to	perform	various	tasks	within	the	database,	such	as	actually	connecting	to	the
database,	creating	tables,	creating	users,	and	altering	the	state	of	the	database.	Object
privileges	are	those	that	allow	a	user	access	to	specific	objects	within	the	database,	such	as
the	ability	to	select	data	or	manipulate	data	in	a	specific	table.

Two	commands	in	SQL	allow	a	user	to	grant	and	revoke	privileges	to	and	from	other	users
or	roles	in	the	database:	GRANT	and	REVOKE.	These	two	commands	control	the	overall
administration	of	privileges	in	the	database.	Although	there	are	many	other	considerations
for	implementing	security	in	a	relational	database,	this	hour	discussed	the	basics	that	relate
to	SQL.

Q&A
Q.	If	a	user	forgets	her	password,	what	should	she	do	to	gain	access	to	the	database
again?

A.	The	user	should	go	to	her	immediate	management	or	an	available	help	desk.	A	help
desk	should	reset	a	user’s	password.	If	not,	the	DBA	or	security	officer	can	reset	the
password.	The	user	should	change	the	password	to	a	password	of	her	choosing	as
soon	as	the	password	is	reset	and	she	is	notified.	Sometimes,	the	DBA	can	affect	this
by	setting	a	specific	property	that	forces	the	user	to	change	her	password	on	the	next
login.	Check	your	particular	implementation’s	documentation	for	specifics.

Q.	What	can	I	do	if	I	want	to	grant	CONNECT	to	a	user,	but	the	user	does	not	need
all	the	privileges	that	are	assigned	to	the	CONNECT	role?

A.	You	would	simply	not	grant	CONNECT	but	only	the	privileges	required.	Should	you
ever	grant	CONNECT	and	the	user	no	longer	needs	all	the	privileges	that	go	with	it,
simply	revoke	CONNECT	from	the	user	and	grant	the	specific	privileges	required.

Q.	Why	is	it	so	important	for	the	new	user	to	change	the	password	when	received
from	whoever	created	the	new	user?

A.	An	initial	password	is	assigned	upon	creation	of	the	user	ID.	No	one,	not	even	the

DBA	or	management,	should	know	a	user’s	password.	The	password	should	be	kept	a
secret	at	all	times	to	prevent	another	user	from	logging	on	to	the	database	under
another	user’s	account.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	What	option	must	a	user	have	to	grant	another	user	privileges	on	an	object	not
owned	by	the	user?

2.	When	privileges	are	granted	to	PUBLIC,	do	all	database	users	acquire	the	privileges
or	only	specified	users?

3.	What	privilege	is	required	to	look	at	data	in	a	specific	table?

4.	What	type	of	privilege	is	SELECT?

5.	What	option	revokes	a	user’s	privilege	to	an	object	as	well	as	the	other	users	that
they	might	have	granted	privileges	to	by	use	of	the	GRANT	option?

Exercises
1.	Log	in	to	your	database	instance	and	switch	the	database	instance	to	use	the
CanaryAirlines	database	if	it	is	not	set	as	your	default.

2.	Type	the	following	at	the	database	prompt	to	get	a	list	of	the	default	tables
depending	on	your	implementation:

Click	here	to	view	code	image

SQL	Server:						SELECT	NAME	FROM	SYS.TABLES;

Oracle:										SELECT	*	FROM	USER_TABLES;

3.	Create	a	new	database	user	as	follows:
Click	here	to	view	code	image

Username:	Steve
Password:	Steve123
Access:	CanaryAirlines	database,	SELECT	on	all	tables

4.	Get	a	list	of	all	database	users	by	typing	the	following	depending	on	your
implementation:

Click	here	to	view	code	image

SQL	Server:				SELECT	*	FROM	SYS.DATABASE_PRINCIPALS	WHERE	TYPE=‘S’;

Oracle:								SELECT	*	FROM	DBA_USERS

5.	Create	a	role	for	your	new	database	user,	Steve,	from	the	previous	exercise.	Call	the
role	employee_reader	and	give	the	role	SELECT	on	just	the	EMPLOYEE	table.
Assign	Steve	to	this	role.

6.	Now	drop	Steve’s	SELECT	access	to	the	other	tables	in	the	database.	Try	to	select
from	the	EMPLOYEES,	AIRPORTS,	and	ROUTES	tables.	What	happened?

Part	VII:	Summarized	Data	Structures

Hour	20.	Creating	and	Using	Views	and	Synonyms

What	You’ll	Learn	in	This	Hour:

	What	views	are	and	how	they	are	used

	Views	and	security

	Storing,	creating,	and	joining	views

	Data	manipulation	in	a	view

	Performance	of	nested	views

	Managing	synonyms

In	this	hour,	you	learn	about	performance,	as	well	as	how	to	create	and	drop	views,	how	to
use	views	for	security,	and	how	to	provide	simplicity	in	data	retrieval	for	end	users	and
reports.	This	hour	also	includes	a	discussion	on	synonyms.

What	Is	a	View?
A	view	is	a	virtual	table.	That	is,	a	view	looks	like	a	table	and	acts	like	a	table	as	far	as	a
user	is	concerned,	but	it	doesn’t	require	physical	storage.	A	view	is	actually	a	composition
of	a	table	in	the	form	of	a	predefined	query,	which	is	stored	in	the	database.	For	example,
you	can	create	a	view	from	EMPLOYEES	that	contains	only	the	employee’s	name	and	city,
instead	of	all	columns	in	EMPLOYEES.	A	view	can	contain	all	rows	of	a	table	or	select
rows	from	a	table.	You	can	create	a	view	from	one	or	many	tables.

When	you	create	a	view,	a	SELECT	statement	is	actually	run	against	the	database,	which
defines	the	view.	The	SELECT	statement	that	defines	the	view	might	simply	contain
column	names	from	the	table,	or	it	can	be	more	explicitly	written	using	various	functions
and	calculations	to	manipulate	or	summarize	the	data	that	the	user	sees.	Figure	20.1	shows
an	example	view.

FIGURE	20.1	The	view

A	view	is	considered	a	database	object,	although	it	is	stored	in	memory	only.	It	takes	up	no
storage	space	as	do	other	database	objects—other	than	the	space	required	to	store	the	view
definition.	The	view’s	creator	or	the	schema	owner	owns	the	view.	The	view	owner
automatically	has	all	applicable	privileges	on	that	view	and	can	grant	privileges	on	the
view	to	other	users,	as	with	tables.	The	GRANT	command’s	GRANT	OPTION	privilege
works	the	same	as	on	a	table.	See	Hour	19,	“Managing	Database	Security,”	for	more
information.

A	view	is	used	in	the	same	manner	that	a	table	is	used	in	the	database,	meaning	that	data
can	be	selected	from	a	view	as	it	is	from	a	table.	Data	can	also	be	manipulated	in	a	view;
although,	there	are	some	restrictions.	The	following	sections	discuss	some	common	uses
for	views	and	how	they	are	stored	in	the	database.

Caution:	Dropping	Tables	Used	by	Views

If	a	table	that	created	a	view	is	dropped,	the	view	becomes	inaccessible.	You
receive	an	error	when	trying	to	query	against	the	view.

Utilizing	Views	to	Simplify	Data	Access
Sometimes,	through	the	process	of	normalizing	your	database	or	just	as	a	process	of
database	design,	the	data	might	be	contained	in	a	table	format	that	does	not	easily	lend
itself	to	querying	by	end	users.	In	this	instance,	you	could	create	a	series	of	views	to	make
the	data	simpler	for	your	end	users	to	query.	Your	users	might	need	to	query	the	employee
salary	and	airport	information	from	the	CanaryAirlines	database.	However,	they
might	not	totally	understand	how	to	create	joins	between	EMPLOYEES	and	AIRPORTS.
To	bridge	this	gap,	you	create	a	view	that	contains	the	join	and	gives	the	end	users	the
right	to	select	from	the	view.

Utilizing	Views	as	a	Form	of	Security
Views	can	be	utilized	as	a	form	of	security	in	the	database.	Say	you	have	the	EMPLOYEES
table.	EMPLOYEES	includes	employee	names,	addresses,	phone	numbers,	emergency
contacts,	department,	position,	and	salary	or	hourly	pay.	You	have	some	temporary	help
come	in	to	write	a	report	of	employees’	names,	addresses,	and	phone	numbers.	If	you	give
access	to	EMPLOYEES	to	the	temporary	help,	they	can	also	see	how	much	each	of	your
employees	is	paid—you	do	not	want	this	to	happen.

To	prevent	that,	you	can	create	a	view	containing	only	the	required	information:	employee
name,	address,	and	phone	numbers.	You	can	then	give	the	temporary	help	access	to	the
view	to	write	the	report	without	giving	them	access	to	the	compensation	columns	in	the
table.

Tip:	Views	Can	Restrict	Access	to	Columns

Views	can	restrict	user	access	to	particular	columns	in	a	table	or	to	rows	in	a	table
that	meet	specific	conditions	as	defined	in	the	WHERE	clause	of	the	view	definition.

Utilizing	Views	to	Maintain	Summarized	Data
If	you	have	a	summarized	data	report	in	which	the	data	in	the	table	or	tables	is	updated
often	and	the	report	is	created	often,	a	view	with	summarized	data	might	be	an	excellent
choice.

For	example,	suppose	that	you	have	a	table	containing	information	about	individuals,	such
as	city	of	residence,	gender,	salary,	and	age.	You	could	create	a	view	based	on	the	table
that	shows	summarized	figures	for	individuals	for	each	city,	such	as	the	average	age,
average	salary,	total	number	of	males,	and	total	number	of	females.	To	retrieve	this
information	from	the	base	table(s)	after	the	view	is	created,	you	can	simply	query	the	view
instead	of	composing	a	SELECT	statement	that	might,	in	some	cases,	turn	out	to	be
complex.

The	only	difference	between	the	syntax	for	creating	a	view	with	summarized	data	and
creating	a	view	from	a	single	or	multiple	tables	is	the	use	of	aggregate	functions.	Review
Hour	9,	“Summarizing	Data	Results	from	a	Query,”	for	the	use	of	aggregate	functions.

Creating	Views
Views	are	created	using	the	CREATE	VIEW	statement.	You	can	create	views	from	a
single	table,	multiple	tables,	or	another	view.	To	create	a	view,	a	user	must	have	the
appropriate	system	privilege	according	to	the	specific	implementation.

The	basic	CREATE	VIEW	syntax	follows:
Click	here	to	view	code	image

CREATE	[RECURSIVE]VIEW	VIEW_NAME
[COLUMN	NAME	[,COLUMN	NAME]]
[OF	UDT	NAME	[UNDER	TABLE	NAME]
[REF	IS	COLUMN	NAME	SYSTEM	GENERATED	|USER	GENERATED	|	DERIVED]
[COLUMN	NAME	WITH	OPTIONS	SCOPE	TABLE	NAME]]

AS
{SELECT	STATEMENT}
[WITH	[CASCADED	|	LOCAL]	CHECK	OPTION]

The	following	subsections	explore	different	methods	for	creating	views	using	the	CREATE
VIEW	statement.

Tip:	ANSI	SQL	Has	No	ALTER	VIEW	Statement

There	is	no	provision	for	an	ALTER	VIEW	statement	in	ANSI	SQL;	although	most
database	implementations	do	provide	for	that	capability.	For	example,	in	older
versions	of	MySQL,	you	use	REPLACE	VIEW	to	alter	a	current	view.	However,
the	newest	versions	of	MySQL,	SQL	Server,	and	Oracle	support	the	ALTER	VIEW
statement.	Check	with	your	specific	database	implementation’s	documentation	to
see	what	is	supported.

Creating	a	View	from	a	Single	Table
You	can	create	a	view	from	a	single	table.	The	syntax	follows:
Click	here	to	view	code	image

CREATE	VIEW	VIEW_NAME	AS
SELECT	*	|	COLUMN1	[,	COLUMN2]
FROM	TABLE_NAME
[WHERE	EXPRESSION1	[,	EXPRESSION2]]
[WITH	CHECK	OPTION]
[GROUP	BY]

The	simplest	form	for	creating	a	view	is	one	based	on	the	entire	contents	of	a	single	table,
as	in	the	following	example:
Click	here	to	view	code	image

CREATE	VIEW	EMPLOYEES_VIEW	AS
SELECT	*
FROM	EMPLOYEES;
View	created.

The	next	example	narrows	the	contents	for	a	view	by	selecting	only	specified	columns
from	the	base	table:

CREATE	VIEW	EMP_VIEW	AS
SELECT	LASTNAME,	FIRSTNAME
FROM	EMPLOYEES;
View	created.

The	following	is	an	example	of	how	columns	from	the	base	table	can	be	combined	or
manipulated	to	form	a	column	in	a	view.	The	view	column	is	titled	NAMES	by	using	an
alias	in	the	SELECT	clause.
Click	here	to	view	code	image

CREATE	VIEW	NAMES	AS
SELECT	LASTNAME	+	‘,	‘	+	FIRSTNAME	AS	DISPLAYNAME
FROM	EMPLOYEES;
View	created.

Now	you	select	the	top	10	rows	of	data	from	the	NAMES	view	that	you	created:

Click	here	to	view	code	image
SELECT	TOP	10	*
FROM	NAMES;

DISPLAYNAME
––––––––––
Iner,	Erlinda
Denty,	Nicolette
Sabbah,	Arlen
Loock,	Yulanda
Sacks,	Tena
Arcoraci,	Inocencia
Astin,	Christa
Contreraz,	Tamara
Capito,	Michale
Ellamar,	Kimberly

(10	row(s)	affected)

The	following	example	shows	how	to	create	a	view	with	summarized	data	from	one	or
more	underlying	tables:
Click	here	to	view	code	image

CREATE	VIEW	CITY_PAY	AS
SELECT	E.CITY,	AVG(E.PAYRATE)	AVG_PAY
FROM	EMPLOYEES	E
GROUP	BY	E.CITY;
View	created.

Now	you	can	select	from	your	summarized	view:
Click	here	to	view	code	image

SELECT	TOP	10	*
FROM	CITY_PAY;

CITY																											AVG_PAY
––––––––––	––––––––––
AFB	MunicipalCharleston	SC					NULL
Downtown	MemorialSpartanburg			19.320000
Aberdeen																							19.326000
Abilene																								13.065000
Abingdon																							20.763333
Adak	Island																				20.545000
Adrian																									21.865000
Afton																										12.680000
Aiken																										16.716666
Ainsworth																						21.960000
Warning:	Null	value	is	eliminated	by	an	aggregate	or	other	SET	operation.

(10	row(s)	affected)

By	summarizing	a	view,	SELECT	statements	that	might	occur	in	the	future	are	simplified
against	the	underlying	table	of	the	view.

Creating	a	View	from	Multiple	Tables
You	can	create	a	view	from	multiple	tables	by	using	a	JOIN	in	the	SELECT	statement.
The	syntax	follows:
Click	here	to	view	code	image

CREATE	VIEW	VIEW_NAME	AS
SELECT	*	|	COLUMN1	[,	COLUMN2]
FROM	TABLE_NAME1,	TABLE_NAME2	[,	TABLE_NAME3]
WHERE	TABLE_NAME1	=	TABLE_NAME2
[AND	TABLE_NAME1	=	TABLE_NAME3]
[EXPRESSION1][,	EXPRESSION2]
[WITH	CHECK	OPTION]
[GROUP	BY]

The	following	is	an	example	of	creating	a	view	from	multiple	tables:
Click	here	to	view	code	image

CREATE	VIEW	EMPLOYEE_SUMMARY	AS
SELECT	E.EMPLOYEEID,	E.LASTNAME,	E.POSITION,	E.HIREDATE	AS	DATE_HIRE,
A.AIRPORTNAME
FROM	EMPLOYEES	E,
					AIRPORTS	A
WHERE	E.AIRPORTID	=	P.AIRPORTID;
View	created.

Remember	that	when	selecting	data	from	multiple	tables,	the	tables	must	be	joined	by
common	columns	in	the	WHERE	clause.	A	view	is	nothing	more	than	a	SELECT
statement;	therefore,	tables	are	joined	in	a	view	definition	the	same	as	they	are	in	a	regular
SELECT	statement.	Recall	the	use	of	table	aliases	to	simplify	the	readability	of	a	multiple-
table	query.

A	view	can	also	be	joined	with	tables	and	with	other	views.	The	same	principles	apply	to
joining	views	with	tables	and	other	views	that	apply	to	joining	tables	to	other	tables.
Review	Hour	13,	“Joining	Tables	in	Queries,”	for	more	information.

Creating	a	View	from	a	View
You	can	create	a	view	from	another	view	using	the	following	format:

CREATE	VIEW2	AS
SELECT	*	FROM	VIEW1

You	can	create	a	view	from	a	view	many	layers	deep	(a	view	of	a	view	of	a	view,	and	so
on).	How	deep	you	can	go	is	implementation-specific.	The	only	problem	with	creating
views	based	on	other	views	is	their	manageability.	For	example,	suppose	that	you	create
VIEW2	based	on	VIEW1	and	then	create	VIEW3	based	on	VIEW2.	If	VIEW1	is	dropped,
VIEW2	and	VIEW3	are	no	good.	The	underlying	information	that	supports	these	views	no
longer	exists.	Therefore,	always	maintain	a	good	understanding	of	the	views	in	the
database	and	on	which	other	objects	those	views	rely	(see	Figure	20.2).

FIGURE	20.2	View	dependencies

Figure	20.2	shows	the	relationship	of	views	that	are	dependent	not	only	on	tables,	but	on
other	views.	VIEW1	and	VIEW2	are	dependent	on	the	TABLE.	VIEW3	is	dependent	on
VIEW1.	VIEW4	is	dependent	on	both	VIEW1	and	VIEW2.	VIEW5	is	dependent	on
VIEW2.	Based	on	these	relationships,	the	following	can	be	concluded:

	If	VIEW1	is	dropped,	VIEW3	and	VIEW4	are	invalid.

	If	VIEW2	is	dropped,	VIEW4	and	VIEW5	are	invalid.

	If	the	TABLE	is	dropped,	none	of	the	views	is	valid.

By	the	Way:	Choose	Carefully	How	You	Implement	Your	Views

If	a	view	is	as	easy	and	efficient	to	create	from	the	base	table	as	from	another	view,
preference	should	go	to	the	view	created	from	the	base	table.

WITH	CHECK	OPTION
WITH	CHECK	OPTION	is	a	CREATE	VIEW	statement	option.	The	purpose	of	WITH
CHECK	OPTION	is	to	ensure	that	all	UPDATE	and	INSERT	commands	satisfy	the
condition(s)	in	the	view	definition.	If	they	do	not	satisfy	the	condition(s),	the	UPDATE	or
INSERT	returns	an	error.	WITH	CHECK	OPTION	actually	enforces	referential	integrity
by	checking	the	view’s	definition	to	see	that	it	is	not	violated.

Following	is	an	example	of	creating	a	view	with	WITH	CHECK	OPTION:
Click	here	to	view	code	image

CREATE	VIEW	EMPLOYEE_PHONES	AS
SELECT	LASTNAME,	FIRSTNAME,	PHONENUMBER
FROM	EMPLOYEES
WHERE	PHONENUMBER	IS	NOT	NULL
WITH	CHECK	OPTION;
View	created.

WITH	CHECK	OPTION	in	this	case	should	deny	the	entry	of	any	NULL	values	in	the

view’s	PAGER	column	because	the	view	is	defined	by	data	that	does	not	have	a	NULL
value	in	the	PAGER	column.

Try	to	insert	a	NULL	value	into	the	PHONENUMBER	column:
Click	here	to	view	code	image

INSERT	INTO	EMPLOYEE_PHONES
VALUES	(‘SMITH’,‘JOHN’,NULL);
insert	into	employee_pagers
												*
ERROR	at	line	1:
ORA-01400:	mandatory	(NOT	NULL)	column	is	missing	or	NULL	during	insert

When	you	choose	to	use	WITH	CHECK	OPTION	during	creation	of	a	view	from	a	view,
you	have	two	options:	CASCADE	and	LOCAL.	CASCADE	is	the	default	and	is	assumed	if
neither	is	specified.	CASCADED	is	the	ANSI	standard	for	the	syntax;	however,	Microsoft
SQL	Server	and	Oracle	use	the	slightly	different	keyword	CASCADE.	The	CASCADE
option	checks	all	underlying	views,	all	integrity	constraints	during	an	update	for	the	base
table,	and	against	defining	conditions	in	the	second	view.	The	LOCAL	option	checks	only
integrity	constraints	against	both	views	and	the	defining	conditions	in	the	second	view,	not
the	underlying	base	table.	Therefore,	it	is	safer	to	create	views	with	the	CASCADE	option
because	the	base	table’s	referential	integrity	is	preserved.

Creating	a	Table	from	a	View
You	can	create	a	table	from	a	view,	just	as	you	can	create	a	table	from	another	table	(or	a
view	from	another	view)	in	Oracle	by	using	the	CREATE	TABLE	AS	SELECT	syntax.

The	syntax	follows:
Click	here	to	view	code	image

CREATE	TABLE	TABLE_NAME	AS
SELECT	{*	|	COLUMN1	[,	COLUMN2]
FROM	VIEW_NAME
[WHERE	CONDITION1	[,	CONDITION2]
[ORDER	BY]

By	the	Way:	Subtle	Differences	Between	Tables	and	Views

Remember	that	the	main	difference	between	a	table	and	a	view	is	that	a	table
contains	actual	data	and	consumes	physical	storage,	whereas	a	view	contains	no
data	and	requires	no	storage	other	than	to	store	the	view	definition	(the	query).

First,	create	a	view	based	on	two	tables:
Click	here	to	view	code	image

CREATE	VIEW	INDIANA_EMPLOYEES	AS
SELECT	E.*
FROM	Employees	E,
					Airports	A
WHERE	E.AirportID	=	A.AirportID
AND	E.State=‘IN’;
View	created.

Next,	create	a	table	based	on	the	previously	created	view:

Click	here	to	view	code	image
CREATE	TABLE	INDIANA_EMPLOYEE_TBL	AS
SELECT	EmployeeID,LastName,FirstName
FROM	INDIANA_EMPLOYEES;
Table	created.

Finally,	select	data	from	the	table,	the	same	as	any	other	table:
Click	here	to	view	code	image

SELECT	*
FROM	INDIANA_EMPLOYEE_TBL
WHERE	ROWNUM	<=	10;

EmployeeID		LastName																							FirstName
–––—	––––––––––	––––––––––
21										Joynson																								Jacqueline
22										Stream																									Modesto
23										Cleamons																							Delmar
183									Petito																									David
184									Habib																										Tanesha
185									Mcglone																								Tamica
210									Geppert																								Mason
211									Vogle																										Daniele
212									Eyler																										Jeanine
213									Hagelgans																						Cassi

10	rows	selected.

Views	and	the	ORDER	BY	Clause
You	cannot	use	the	ORDER	BY	clause	in	the	CREATE	VIEW	statement;	however,	in
Oracle	the	GROUP	BY	clause	has	the	same	effect	as	an	ORDER	BY	clause	when	it’s	used
in	the	CREATE	VIEW	statement.

The	following	is	an	example	of	a	GROUP	BY	clause	in	a	CREATE	VIEW	statement:
Click	here	to	view	code	image

CREATE	VIEW	NAMES2	AS
SELECT	LASTNAME	||	‘,	‘	||	FIRSTNAME	AS	NAME
FROM	EMPLOYEES
GROUP	BY	LASTNAME	||	‘,	‘	||	FIRSTNAME;
View	created.

Tip:	Defer	the	Use	of	the	GROUP	BY	Clause	in	Your	Views

Using	the	ORDER	BY	clause	in	the	SELECT	statement	that	is	querying	the	view	is
better	and	simpler	than	using	the	GROUP	BY	clause	in	the	CREATE	VIEW
statement.

If	you	select	data	from	the	view,	the	data	is	in	alphabetical	order	(because	you	grouped	by
NAME):
Click	here	to	view	code	image

SELECT	*
FROM	NAMES2
WHERE	ROWNUM	<=	10;

NAME
––––––––––
Aarant,	Sidney
Abbas,	Gail
Abbay,	Demetrice
Abbington,	Gaynelle
Abdelal,	Marcelo
Abdelwahed,	Scarlet
Abdou,	Clinton
Abendroth,	Anastacia
Aberle,	Jaunita
Abernatha,	Elmira

10	rows	selected.

Updating	Data	Through	a	View
You	can	update	the	underlying	data	of	a	view	under	certain	conditions:

	The	view	must	not	involve	joins.

	The	view	must	not	contain	a	GROUP	BY	clause.

	The	view	must	not	contain	a	UNION	statement.

	The	view	cannot	contain	a	reference	to	the	pseudocolumn	ROWNUM.

	The	view	cannot	contain	group	functions.

	The	DISTINCT	clause	cannot	be	used.

	The	WHERE	clause	cannot	include	a	nested	table	expression	that	includes	a	reference
to	the	same	table	as	referenced	in	the	FROM	clause.

	This	means	that	the	view	can	perform	INSERTS,	UPDATES,	and	DELETES	as	long
as	they	honor	these	caveats.

Review	Hour	14,	“Using	Subqueries	to	Define	Unknown	Data,”	for	the	UPDATE
command’s	syntax.

Dropping	a	View
You	use	the	DROP	VIEW	command	to	drop	a	view	from	the	database.	The	two	options	for
the	DROP	VIEW	command	are	RESTRICT	and	CASCADE.	If	a	view	is	dropped	with	the
RESTRICT	option	and	other	views	are	referenced	in	a	constraint,	the	DROP	VIEW	errs.	If
the	CASCADE	option	is	used	and	another	view	or	constraint	is	referenced,	the	DROP
VIEW	succeeds	and	the	underlying	view	or	constraint	is	dropped.	An	example	follows:

DROP	VIEW	NAMES2;
View	dropped.

Performance	Impact	of	Nested	Views
Views	adhere	to	the	same	performance	characteristics	as	tables	when	they	are	used	in
queries.	As	such,	you	need	to	be	cognizant	that	hiding	complex	logic	behind	a	view	does
not	negate	that	the	data	must	be	parsed	and	assembled	by	the	system	querying	the
underlying	tables.	Views	must	be	treated	as	any	other	SQL	statement	for	performance
tuning.	If	the	query	that	makes	up	your	view	is	not	preformant,	the	view	itself	experiences
performance	issues.

In	addition,	some	users	employ	views	to	break	down	complex	queries	into	multiple	units
of	views	and	views	that	are	created	on	top	of	other	views.	Although	this	might	seem	to	be
an	excellent	idea	to	break	down	the	logic	into	simpler	steps,	it	can	present	some
performance	degradation.	This	is	because	the	query	engine	must	break	down	and	translate
each	sublayer	of	view	to	determine	what	exactly	it	needs	to	do	for	the	query	request.

The	more	layers	you	have,	the	more	the	query	engine	has	to	work	to	come	up	with	an
execution	plan.	In	fact,	most	query	engines	do	not	guarantee	that	you	get	the	best	overall
plan	but	merely	that	you	get	a	decent	plan	in	the	shortest	amount	of	time.	So	it	is	always
best	practice	to	keep	the	levels	of	code	in	your	query	as	flat	as	possible	and	to	test	and
tune	the	statements	that	make	up	your	views.

What	Is	a	Synonym?
A	synonym	is	merely	another	name	for	a	table	or	a	view.	Synonyms	are	usually	created	so
a	user	can	avoid	having	to	qualify	another	user’s	table	or	view	to	access	the	table	or	view.
Synonyms	can	be	created	as	PUBLIC	or	PRIVATE.	Any	user	of	the	database	can	use	a
PUBLIC	synonym;	only	the	owner	of	a	database	and	any	users	that	have	been	granted
privileges	can	use	a	PRIVATE	synonym.

Either	a	database	administrator	(or	another	designated	individual)	or	individual	users
manage	synonyms.	Because	there	are	two	types	of	synonyms,	PUBLIC	and	PRIVATE,
different	system-level	privileges	might	be	required	to	create	one	or	the	other.	All	users	can
generally	create	a	PRIVATE	synonym.	Typically,	only	a	DBA	or	privileged	database	user
can	create	a	PUBLIC	synonym.	Refer	to	your	specific	implementation	for	required
privileges	when	creating	synonyms.

By	the	Way:	Synonyms	Are	Not	ANSI	SQL	Standard

Synonyms	are	not	American	National	Standards	Institute	(ANSI)	SQL	standard;
however,	because	several	major	implementations	use	synonyms,	it	is	best	to	discuss
them	briefly	here.	You	must	check	your	particular	implementation	for	the	exact	use
of	synonyms,	if	available.	Note,	however,	that	MySQL	does	not	support	synonyms.
However,	you	might	implement	the	same	type	of	functionality	using	a	view	instead.

Creating	Synonyms
The	general	syntax	to	create	a	synonym	follows:
Click	here	to	view	code	image

CREATE	[PUBLIC|PRIVATE]	SYNONYM	SYNONYM_NAME	FOR	TABLE|VIEW

You	create	a	synonym	called	EMP,	short	for	Employees	table,	in	the	following	Oracle
example.	This	frees	you	from	having	to	spell	out	the	full	table	name.
Click	here	to	view	code	image

CREATE	SYNONYM	EMP	FOR	Employees;
Synonym	created.
SELECT	LastName
FROM	EMP
WHERE	RowNum	<=	10;

LastName
––––––––––
Iner
Denty
Sabbah
Loock
Sacks
Arcoraci
Astin
Contreraz
Capito
Ellamar

10	rows	selected.

It	is	also	common	for	a	table	owner	to	create	a	synonym	for	the	table	to	which	you	have
been	granted	access,	so	you	do	not	have	to	qualify	the	table	name	by	the	name	of	the
owner:
Click	here	to	view	code	image

CREATE	SYNONYM	FLIGHTS	FOR	USER1.Flights;
Synonym	created.

Dropping	Synonyms
Dropping	synonyms	is	like	dropping	almost	any	other	database	object.	The	general	syntax
to	drop	a	synonym	follows:
Click	here	to	view	code	image

DROP	[PUBLIC|PRIVATE]	SYNONYM	SYNONYM_NAME

Following	is	an	example:
DROP	SYNONYM	EMP;
Synonym	dropped.

Summary
This	hour	discussed	two	important	features	in	SQL:	views	and	synonyms.	In	many	cases,
these	features	can	aid	in	the	overall	functionality	of	relational	database	users.	Views	were
defined	as	virtual	table	objects	that	look	and	act	like	tables	but	do	not	take	physical	space
like	tables.	Views	are	actually	defined	by	queries	against	tables	and	possible	other	views
in	the	database.	Administrators	typically	use	views	to	restrict	data	that	a	user	sees	and	to
simplify	and	summarize	data.	You	can	create	views	from	views,	but	take	care	not	to
embed	views	too	deeply	to	avoid	losing	control	over	their	management.	There	are	various
options	when	creating	views;	some	are	implementation-specific.

Synonyms	are	objects	in	the	database	that	represent	other	objects.	They	simplify	the	name
of	another	object	in	the	database,	either	by	creating	a	synonym	with	a	short	name	for	an
object	with	a	long	name	or	by	creating	a	synonym	on	an	object	owned	by	another	user	to
which	you	have	access.	There	are	two	types	of	synonyms:	PUBLIC	and	PRIVATE.	A
PUBLIC	synonym	is	one	that	is	accessible	to	all	database	users,	whereas	a	PRIVATE
synonym	is	accessible	to	a	single	user.	A	DBA	typically	creates	a	PUBLIC	synonym,
whereas	each	user	normally	creates	her	own	PRIVATE	synonyms.

Q&A
Q.	How	can	a	view	contain	data	but	take	no	storage	space?

A.	A	view	does	not	contain	data;	it	is	a	virtual	table	or	a	stored	query.	The	only	space
required	for	a	view	is	for	the	actual	view	creation	statement,	called	the	view
definition.

Q.	What	happens	to	the	view	if	a	table	from	which	a	view	were	created	is	dropped?

A.	The	view	is	invalid	because	the	underlying	data	for	the	view	no	longer	exists.

Q.	What	are	the	limits	on	naming	the	synonym	when	creating	synonyms?

A.	This	is	implementation-specific.	However,	the	naming	convention	for	synonyms	in
most	major	implementations	follows	the	same	rules	that	apply	to	the	tables	and	other
objects	in	the	database.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	Can	you	delete	a	row	of	data	from	a	view	that	you	created	from	multiple	tables?

2.	When	creating	a	table,	the	owner	is	automatically	granted	the	appropriate	privileges

on	that	table.	Is	this	true	when	creating	a	view?

3.	Which	clause	orders	data	when	creating	a	view?

4.	Do	Oracle	and	SQL	Server	handle	the	ability	to	order	a	view	in	the	same	way?

5.	Which	option	can	you	use	when	creating	a	view	from	a	view	to	check	integrity
constraints?

6.	You	try	to	drop	a	view	and	receive	an	error	because	of	one	or	more	underlying
views.	What	must	you	do	to	drop	the	view?

Exercises
1.	Write	a	statement	to	create	a	view	based	on	the	total	contents	of	EMPLOYEES	table.

2.	Write	a	statement	that	creates	a	summarized	view	containing	the	average	pay	rate
and	average	salary	for	each	city	in	EMPLOYEES	table.

3.	Create	another	view	for	the	same	summarized	data,	except	use	the	view	you	created
in	Exercise	1	instead	of	the	base	EMPLOYEES	table.	Compare	the	two	results.

4.	Use	the	view	in	Exercise	2	to	create	a	table	called
EMPLOYEE_PAY_SUMMARIZED.	Verify	that	the	view	and	the	table	contain	the
same	data.

5.	Write	a	statement	to	create	a	synonym	for	your	new
EMPLOYEE_PAY_SUMMARIZED	table.

6.	Write	two	queries,	one	that	uses	the	base	EMPLOYEE_PAY_SUMMARIZED	table
and	one	that	uses	your	synonym	that	compares	an	employee’s	salary	or	pay	rate	with
the	average	salary	for	the	city	in	which	they	reside.

7.	Write	a	statement	that	drops	the	table,	the	synonym,	and	the	three	views	that	you
created.

Hour	21.	Working	with	the	System	Catalog

What	You’ll	Learn	in	This	Hour:

	Definition	of	the	system	catalog

	How	to	create	the	system	catalog

	What	data	the	system	catalog	contains

	Examples	of	system	catalog	tables

	Querying	the	system	catalog

	Updating	the	system	catalog

In	this	hour,	you	learn	about	the	system	catalog,	commonly	referred	to	as	the	data
dictionary	in	some	relational	database	implementations.	By	the	end	of	this	hour,	you	will
understand	the	purpose	and	contents	of	the	system	catalog	and	will	query	it	to	find
information	about	the	database	based	on	commands	that	you	have	learned	in	previous
hours.	Each	major	implementation	has	some	form	of	a	system	catalog	that	stores
information	about	the	database.	This	hour	shows	examples	of	the	elements	contained	in	a
few	of	the	different	system	catalogs	for	the	implementations	discussed	in	this	book.

What	Is	the	System	Catalog?
The	system	catalog	is	a	collection	of	tables	and	views	that	contain	important	information
about	a	database.	A	system	catalog	is	available	for	each	database.	Information	in	the
system	catalog	defines	the	structure	of	the	database	and	information	on	the	data	contained
therein.	For	example,	the	Data	Definition	Language	(DDL)	for	all	tables	in	the	database	is
stored	in	the	system	catalog.	See	Figure	21.1	for	an	example	of	the	system	catalog	within
the	database.

FIGURE	21.1	The	system	catalog

As	referenced	in	Figure	21.1,	the	system	catalog	for	a	database	is	actually	part	of	the
database.	Within	the	database	are	objects,	such	as	tables,	indexes,	and	views.	The	system

catalog	is	basically	a	group	of	objects	that	contain	information	that	defines	other	objects	in
the	database,	the	structure	of	the	database,	and	various	other	significant	information.

The	system	catalog	for	your	implementation	might	be	divided	into	logical	groups	of
objects	to	provide	tables	that	are	accessible	by	the	database	administrator	(DBA)	and	any
other	database	user.	For	example,	a	user	might	need	to	view	the	particular	database
privileges	that	she	has	been	granted	but	doesn’t	care	how	this	is	internally	structured	in	the
database.	A	user	typically	queries	the	system	catalog	to	acquire	information	on	the	user’s
own	objects	and	privileges,	whereas	the	DBA	needs	to	inquire	about	any	structure	or	event
within	the	database.	In	some	implementations,	system	catalog	objects	are	accessible	only
to	the	DBA.

The	system	catalog	is	crucial	to	the	DBA	or	any	other	database	user	who	needs	to	know
about	the	database’s	structure	and	nature.	It	is	especially	important	in	those	instances	in
which	the	database	user	is	not	presented	with	a	graphical	user	interface	(GUI).	The	system
catalog	allows	orders	to	be	kept,	not	only	by	the	DBA	and	users,	but	also	by	the	database
server.

Tip:	Database	System	Catalogs	Vary

Each	implementation	has	its	own	naming	conventions	for	the	system	catalog’s
tables	and	views.	The	naming	is	not	important;	however,	learning	what	the	system
catalog	does	is	important,	as	is	what	it	contains	and	how	and	where	to	retrieve	the
information.

How	Is	the	System	Catalog	Created?
The	system	catalog	is	created	either	automatically	with	the	creation	of	the	database,	or	by
the	DBA	immediately	following	the	creation	of	the	database.	For	example,	a	set	of
predefined,	vendor-provided	SQL	scripts	in	Oracle	is	executed,	which	builds	all	the
database	tables	and	views	in	the	system	catalog	that	are	accessible	to	a	database	user.

The	system	catalog	tables	and	views	are	system-owned	and	not	specific	to	any	one
schema.	In	Oracle,	for	example,	the	system	catalog	owner	is	a	user	account	called	SYS,
which	has	full	authority	in	the	database.	In	Microsoft	SQL	Server,	the	system	catalog	for
the	SQL	server	is	located	in	the	master	database.	Check	your	specific	vendor
documentation	to	find	where	the	system	catalogs	are	stored.

What	Is	Contained	in	the	System	Catalog?
The	system	catalog	contains	a	variety	of	information	accessible	to	many	users	and	is
sometimes	used	for	different	specific	purposes	by	each	of	those	users.

The	system	catalog	contains	information	such	as	the	following:

	User	accounts	and	default	settings

	Privileges	and	other	security	information

	Performance	statistics

	Object	sizing

	Object	growth

	Table	structure	and	storage

	Index	structure	and	storage

	Information	on	other	database	objects,	such	as	views,	synonyms,	triggers,	and	stored
procedures

	Table	constraints	and	referential	integrity	information

	User	sessions

	Auditing	information

	Internal	database	settings

	Locations	of	database	files

The	database	server	maintains	the	system	catalog.	For	example,	when	a	table	is	created,
the	database	server	inserts	the	data	into	the	appropriate	system	catalog	table	or	view.
When	a	table’s	structure	is	modified,	appropriate	objects	in	the	data	dictionary	are
updated.	The	following	sections	describe	the	types	of	data	that	are	contained	in	the	system
catalog.

User	Data
All	information	about	individual	users	is	stored	in	the	system	catalog:	the	system	and
object	privileges	a	user	has	been	granted,	the	objects	a	user	owns,	and	the	objects	not
owned	by	the	user	to	which	the	user	has	access.	The	user	tables	or	views	are	accessible	to
the	individual	to	query	for	information.	See	your	implementation	documentation	on	the
system	catalog	objects.

Security	Information
The	system	catalog	also	stores	security	information,	such	as	user	identifications,	encrypted
passwords,	and	various	privileges	and	groups	of	privileges	that	database	users	utilize	to
access	the	data.	Audit	tables	exist	in	some	implementations	for	tracking	actions	that	occur
within	the	database,	as	well	as	by	whom,	when,	and	so	on.	Database	user	sessions	can	be
closely	monitored	through	the	use	of	the	system	catalog	in	many	implementations.

Database	Design	Information
The	system	catalog	contains	information	regarding	the	actual	database.	That	information
includes	the	database’s	creation	date,	name,	object	sizing,	size	and	location	of	data	files,
referential	integrity	information,	indexes	that	exist	in	the	database,	and	specific	column
information	and	column	attributes	for	each	table	in	the	database.

Performance	Statistics
Performance	statistics	are	typically	maintained	in	the	system	catalog	as	well.	Performance
statistics	include	information	concerning	the	performance	of	SQL	statements,	both	elapsed
time	and	the	execution	method	of	an	SQL	statement	taken	by	the	optimizer.	Other
information	for	performance	concerns	memory	allocation	and	usage,	free	space	in	the
database,	and	information	that	allows	table	and	index	fragmentation	to	be	controlled
within	the	database.	You	can	use	this	performance	information	to	properly	tune	the
database,	rearrange	SQL	queries,	and	redesign	methods	of	access	to	data	to	achieve	better
overall	performance	and	SQL	query	response	time.

System	Catalog	Tables	by	Implementation
Each	implementation	has	several	tables	and	views	that	compose	the	system	catalog,	some
of	which	are	categorized	by	user	level,	system	level,	and	DBA	level.	For	your	particular
implementation,	you	should	query	these	tables	and	read	your	implementation’s
documentation	for	more	information	on	system	catalog	tables.	Table	21.1	has	examples
from	the	two	most	popular	database	implementations,	SQL	Server	and	Oracle.

TABLE	21.1	Major	Implementation	System	Catalog	Objects

These	are	just	a	few	of	the	system	catalog	objects	from	the	main	relational	database
implementations	that	we	cover	in	the	book.	Many	of	the	system	catalog	objects	that	are
similar	between	implementations	are	shown	here,	but	this	hour	strives	to	provide	some
variety.	Overall,	each	implementation	is	specific	to	the	organization	of	the	system
catalog’s	contents.

Querying	the	System	Catalog
The	system	catalog	tables	or	views	are	queried	as	any	other	table	or	view	in	the	database
using	SQL.	A	user	can	usually	query	the	user-related	tables	but	might	be	denied	access	to
various	system	tables	accessible	only	by	privileged	database	user	accounts,	such	as	the
DBA.

You	create	a	SQL	query	to	retrieve	data	from	the	system	catalog	just	as	you	create	a	query
to	access	any	other	table	in	the	database.	For	example,	the	following	query	returns	all	rows
of	data	from	the	Microsoft	SQL	Server	table	SYS.TABLES:

SELECT	*	FROM	SYS.TABLES;
GO

The	following	query	lists	all	user	accounts	in	the	database	and	is	run	from	the	MySQL
system	database:
Click	here	to	view	code	image

SELECT	NAME

FROM	SYS.SYSUSERS

NAME
––––––––––
db_accessadmin
db_backupoperator
db_datareader
db_datawriter
db_ddladmin
db_denydatareader
db_denydatawriter
db_owner
db_securityadmin
dbo
guest
INFORMATION_SCHEMA
public
sys

(14	row(s)	affected)

Note:	A	Word	About	the	Following	Examples

The	following	examples	use	the	SQL	Server	system	catalog.	SQL	Server	is	chosen
for	no	particular	reason	other	than	to	give	you	some	examples	from	one	of	the
database	implementations	talked	about	in	the	book.

The	following	query	lists	all	tables	within	our	CanaryAirlines	schema	and	is	run
from	the	INFORMATION_SCHEMA:
Click	here	to	view	code	image

SELECT	TABLE_NAME
FROM	INFORMATION_SCHEMA.TABLES	WHERE	TABLE_CATALOG=‘CanaryAirlines’;

TABLE_NAME
––––––––––
Trips
TripItinerary
Countries
Airports
Passengers
Aircraft
AircraftFleet
FlightStatuses
Flights
Routes
vw_FlightNumbersPerDay
vw_FlightInfo
RandomView
Employees
RICH_EMPLOYEES

sysdiagrams

(16	row(s)	affected)

Caution:	Manipulating	System	Catalog	Tables	Can	Be	Dangerous

Never	directly	manipulate	tables	in	the	system	catalog	in	any	way.	(Only	the	DBA
has	access	to	manipulate	system	catalog	tables.)	Doing	so	might	compromise	the
database’s	integrity.	Remember	that	information	concerning	the	structure	of	the
database,	as	well	as	all	objects	in	the	database,	is	maintained	in	the	system	catalog.
The	system	catalog	is	typically	isolated	from	all	other	data	in	the	database.	Some
implementations,	such	as	Microsoft	SQL	Server,	do	not	allow	the	user	to
manipulate	the	system	catalog	directly	to	maintain	the	integrity	of	the	system.

The	next	query	returns	all	the	system	privileges	that	have	been	granted	to	the	database
user	BRANDON:
Click	here	to	view	code	image

SELECT	TABLE_NAME,	PRIVILEGE_TYPE

FROM	INFORMATION_SCHEMA.TABLE_PRIVILEGES

WHERE	GRANTEE	=	‘BRANDON’;

TABLE_NAME																					PRIVILEGE_TYPE
––––––––––	––––—
Countries																						SELECT
Airports																							SELECT
Aircraft																							SELECT
AircraftFleet																		SELECT

(4	row(s)	affected)

Note:	These	Are	Just	a	Few	of	the	System	Catalog	Tables	Available

The	examples	shown	in	this	section	represent	a	very	small	sampling	of	the
information	that	is	available	from	any	system	catalog.	You	might	find	it	extremely
helpful	to	dump	data	dictionary	information	using	queries	to	a	file	that	can	be
printed	and	used	as	a	reference.	Refer	to	your	implementation	documentation	for
specific	system	catalog	tables	and	columns	within	those	available	tables.

Updating	System	Catalog	Objects
The	system	catalog	is	used	only	for	query	operations—even	when	the	DBA	is	using	it.
The	database	server	makes	updates	to	the	system	catalog	automatically.	For	example,	a
table	is	created	in	the	database	when	a	database	user	issues	a	CREATE	TABLE	statement.
The	database	server	then	places	the	DDL	that	created	the	table	in	the	system	catalog	under
the	appropriate	system	catalog	table.

There	is	never	a	need	to	manually	update	a	table	in	the	system	catalog	even	though	you
might	have	the	power	to	do	so.	The	database	server	for	each	implementation	performs
these	updates	according	to	actions	that	occur	within	the	database,	as	shown	in	Figure	21.2.

FIGURE	21.2	Updates	to	the	system	catalog

Summary
In	this	hour	you	learned	about	the	system	catalog	for	a	relational	database.	The	system
catalog	is,	in	a	sense,	a	database	within	a	database.	The	system	catalog	is	essentially	a
database	that	contains	all	information	about	the	database	in	which	it	resides.	It	is	a	way	of
maintaining	the	database’s	overall	structure,	tracking	events	and	changes	that	occur	within
the	database,	and	providing	the	vast	pool	of	information	necessary	for	overall	database
management.	The	system	catalog	is	used	only	for	query	operations.	Database	users	should
not	make	changes	directly	to	system	tables.	However,	changes	are	implicitly	made	each
time	a	change	is	made	to	the	database	structure	itself,	such	as	the	creation	of	a	table.	The
database	server	makes	these	entries	in	the	system	catalog	automatically.

Q&A
Q.	As	a	database	user,	I	realize	I	can	find	information	about	my	objects.	How	can	I
find	information	about	other	users’	objects?

A.	Users	can	employ	sets	of	tables	and	views	to	query	in	most	system	catalogs.	One	set
of	these	tables	and	views	includes	information	on	what	objects	you	have	access	to.	To
find	out	about	other	users’	access,	you	need	to	check	the	system	catalogs	containing
that	information.	For	example,	in	Oracle	you	could	check	the	DBA_TABLES	and
DBA_USERS	system	catalogs.

Q.	If	a	user	forgets	his	password,	is	there	a	table	that	the	DBA	can	query	to	get	the
password?

A.	Yes	and	no.	The	password	is	maintained	in	a	system	table,	but	it	is	typically
encrypted	so	that	even	the	DBA	cannot	read	the	password.	The	password	has	to	be
reset	if	the	user	forgets	it,	which	the	DBA	can	easily	accomplish.

Q.	How	can	I	tell	which	columns	are	in	a	system	catalog	table?

A.	You	can	query	the	system	catalog	tables	as	you	query	any	other	table.	Simply	query
the	table	holding	that	particular	information.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	In	some	implementations,	what	is	the	system	catalog	also	known	as?

2.	Can	a	regular	user	update	the	system	catalog?

3.	Which	Microsoft	SQL	Server	system	table	retrieves	information	about	views	that
exist	in	the	database?

4.	Who	owns	the	system	catalog?

5.	What	is	the	difference	between	the	Oracle	system	objects	ALL_TABLES	and
DBA_TABLES?

6.	Who	makes	modifications	to	the	system	tables?

Exercises
1.	In	Hour	19,	“Managing	Database	Security,”	you	looked	at	the	tables	in	your
CanaryAirlines	database.	Now	find	some	of	the	system	tables	that	we
discussed	earlier	in	this	hour.	Review	them.

2.	At	the	prompt,	type	in	queries	to	bring	up	each	of	the	following:

	Information	on	all	the	tables

	Information	on	all	the	views

	All	the	usernames	in	the	database

3.	Write	a	query	using	multiple	system	tables	to	retrieve	all	the	users	and	their
associated	privileges	in	your	CanaryAirlines	database.

Part	VIII:	Applying	SQL	Fundamentals
in	Today’s	World

Hour	22.	Advanced	SQL	Topics

What	You’ll	Learn	in	This	Hour:

	Definition	of	cursors

	Using	stored	procedures

	Definition	of	triggers

	Basics	of	dynamic	SQL

	Using	SQL	to	generate	SQL

	Direct	SQL	versus	embedded	SQL

	Embedding	SQL	with	a	call-level	interface

In	this	hour,	you	are	introduced	to	some	advanced	SQL	topics	that	extend	beyond	the	basic
operations	that	you	have	learned	so	far,	such	as	querying	data	from	the	database,	building
database	structures,	and	manipulating	data	within	the	database.	By	the	end	of	the	hour,
you	should	understand	the	concepts	behind	cursors,	stored	procedures,	triggers,	dynamic
SQL,	direct	versus	embedded	SQL,	and	SQL	generated	from	SQL.	These	advanced
features	are	available	in	many	implementations,	all	of	which	provide	enhancements	to	the
parts	of	SQL	discussed	so	far.

Note:	Some	Topics	Are	Not	ANSI	SQL-Related

Not	all	topics	covered	in	this	hour	are	ANSI	SQL,	so	you	must	check	your
particular	implementation	for	variations	in	syntax	and	rules.	A	few	major	vendors’
syntax	is	shown	in	this	hour	for	comparison.

Cursors
Normally,	database	operations	are	commonly	referred	to	as	set-based	operations.	This
means	that	the	majority	of	ANSI	SQL	commands	are	geared	toward	working	on	a	block	of
data.	A	cursor,	however,	is	typically	used	to	retrieve	a	subset	of	data	from	the	database	in
a	row-based	operation.	Thereby,	each	row	in	the	cursor	can	be	evaluated	by	a	program,
one	row	at	a	time.	Cursors	are	normally	used	in	SQL	that	is	embedded	in	procedural-type
programs.	Some	cursors	are	created	implicitly	by	the	database	server,	whereas	others	are
defined	by	the	SQL	programmer.	Each	SQL	implementation	might	define	the	use	of
cursors	differently.

This	section	shows	syntax	examples	from	the	two	popular	implementations	that	we	have
tracked	throughout	the	book:	Microsoft	SQL	Server	and	Oracle.

The	syntax	to	declare	a	cursor	for	Microsoft	SQL	Server	follows:
Click	here	to	view	code	image

DECLARE	CURSOR_NAME	CURSOR
FOR	SELECT_STATEMENT

[FOR	[READ	ONLY	|	UPDATE	{[COLUMN_LIST]}]

The	syntax	for	Oracle	follows:
Click	here	to	view	code	image

DECLARE	CURSOR	CURSOR_NAME
IS	{SELECT_STATEMENT}

The	following	cursor	contains	the	result	subset	of	all	records	from	EMPLOYEE_TBL:
Click	here	to	view	code	image

DECLARE	CURSOR	EMP_CURSOR	IS
SELECT	*	FROM	EMPLOYEE_TBL
{	OTHER	PROGRAM	STATEMENTS	}

According	to	the	ANSI	standard,	you	use	the	following	operations	to	access	a	cursor	after
it	has	been	defined:

	OPEN—Opens	a	defined	cursor

	FETCH—Fetches	rows	from	a	cursor	into	a	program	variable

	CLOSE—Closes	the	cursor	when	operations	against	the	cursor	are	complete

Opening	a	Cursor
You	cannot	access	a	cursor	until	you	have	opened	it.	When	a	cursor	is	opened,	the
specified	cursor’s	SELECT	statement	is	executed,	and	the	results	of	the	query	are	stored	in
a	staging	area	in	memory.

The	syntax	to	open	a	cursor	in	Microsoft	SQL	Server	follows:
OPEN	CURSOR_NAME

The	syntax	in	Oracle	follows:
Click	here	to	view	code	image

OPEN	CURSOR_NAME	[PARAMETER1	[,	PARAMETER2]]

To	open	the	EMP_CURSOR,	use	the	following	statement:
OPEN	EMP_CURSOR

Fetching	Data	from	a	Cursor
You	can	retrieve	the	contents	of	the	cursor	(results	from	the	query)	through	the	FETCH
statement	after	you	open	the	cursor.

The	syntax	for	the	FETCH	statement	in	Microsoft	SQL	Server	follows:
Click	here	to	view	code	image

FETCH	NEXT	FROM	CURSOR_NAME	[INTO	FETCH_LIST]

The	syntax	for	Oracle	follows:
Click	here	to	view	code	image

FETCH	CURSOR_NAME	{INTO	:	HOST_VARIABLE
[[INDICATOR]	:	INDICATOR_VARIABLE]
[,	:	HOST_VARIABLE

[[INDICATOR]	:	INDICATOR_VARIABLE]]
|	USING	DESCRIPTOR	DESCRIPTOR]	}

To	fetch	the	contents	of	EMP_CURSOR	into	a	variable	called	EMP_RECORD,	your	FETCH
statement	might	appear	as	follows:
Click	here	to	view	code	image

FETCH	NEXT	FROM	EMP_CURSOR	INTO	EMP_RECORD

When	fetching	data	from	a	cursor,	note	that	at	some	time	you	will	come	to	the	end	of	the
cursor.	Each	implementation	has	a	different	way	to	set	up	a	way	to	handle	this	so	that	you
can	gracefully	close	the	cursor	without	receiving	an	error.	Following	are	pseudocode
examples	from	Microsoft	SQL	Server	and	Oracle	on	how	to	handle	these	situations.	The
syntax	is	meant	to	give	you	a	feel	for	the	process	of	handling	cursors.

The	syntax	for	Microsoft	SQL	Server	follows:
Click	here	to	view	code	image

BEGIN
					DECLARE	@custname	VARCHAR(30);
					DECLARE	namecursor	CURSOR	FOR	SELECT	LastName	FROM	Passengers;
				OPEN	namecursor;
					FETCH	NEXT	FROM	namecursor	INTO	@custname
					WHILE	(@@FETCH_STATUS<>-1)
											BEGIN
															IF	(@@FETCH_STATUS<>-2)
															BEGIN
																					—	Do	something	with	the	variable
															END
					FETCH	NEXT	FROM	namecursor	INTO	@custname
					END
					CLOSE	namecursor
					DEALLOCATE	namecursor
END;

The	syntax	for	Oracle	follows:
Click	here	to	view	code	image

custname		varchar(30);
CURSOR	namecursor
IS
SELECT	LastName	FROM	Passengers;
BEGIN
					OPEN	namecursor;
					FETCH	namecursor	INTO	custname;
					IF	namecursor%notfound	THEN
										—	Do	some	handling	as	you	are	at	the	end	of	the	cursor
					END	IF;
					—	Do	something	with	the	variable
					CLOSE	namecursor;
END;

Note:	More	Variations	Exist	in	Advanced	Features

As	you	can	see	from	the	previous	examples,	variations	among	the	implementations
are	extensive,	especially	with	advanced	features	of	and	extensions	to	SQL,	which
are	covered	in	Hour	24,	“Extensions	to	Standard	SQL.”	You	must	check	your
particular	implementation	for	the	exact	usage	of	a	cursor.

Closing	a	Cursor
You	can	obviously	close	a	cursor	if	you	can	open	one.	After	it’s	closed,	it	is	no	longer
available	to	user	programs.	Closing	a	cursor	is	quite	simple.

The	Microsoft	SQL	Server	syntax	for	the	closing	of	a	cursor	and	the	deallocation	of	a
cursor	follows:
Click	here	to	view	code	image

CLOSE	CURSOR_NAME
DEALLOCATE	CURSOR	CURSOR_NAME

When	a	cursor	is	closed	in	Oracle,	the	resources	and	name	are	released	without	the
DEALLOCATE	statement.	The	syntax	for	Oracle	follows:

CLOSE	CURSOR_NAME

Stored	Procedures	and	Functions
Stored	procedures	are	groupings	of	related	SQL	statements—commonly	referred	to	as
functions	and	subprograms—that	allow	ease	and	flexibility	for	a	programmer.	This	ease
and	flexibility	are	derived	from	the	fact	that	a	stored	procedure	is	often	easier	to	execute
than	a	number	of	individual	SQL	statements.	Stored	procedures	can	be	nested	within	other
stored	procedures.	That	is,	a	stored	procedure	can	call	another	stored	procedure,	which	can
call	another	stored	procedure,	and	so	on.

Stored	procedures	allow	for	procedural	programming.	The	basic	SQL	DDL	(Data
Definition	Language),	DML	(Data	Manipulation	Language),	and	DQL	(Data	Query
Language)	statements	(CREATE	TABLE,	INSERT,	UPDATE,	SELECT,	and	so	on)	allow
you	the	opportunity	to	tell	the	database	what	needs	to	be	done,	but	not	how	to	do	it.	By
coding	stored	procedures,	you	tell	the	database	engine	how	to	go	about	processing	the
data.

A	stored	procedure	is	a	group	of	one	or	more	SQL	statements	or	functions	that	are	stored
in	the	database,	compiled,	and	ready	to	be	executed	by	a	database	user.	A	stored	function
is	the	same	as	a	stored	procedure,	but	a	function	returns	a	value.

Functions	are	called	by	procedures.	When	a	function	is	called	by	a	procedure,	parameters
can	be	passed	into	a	function	like	a	procedure,	a	value	is	computed,	and	then	the	value	is
passed	back	to	the	calling	procedure	for	further	processing.

When	a	stored	procedure	is	created,	the	various	subprograms	and	functions	that	compose
the	stored	procedure	are	actually	stored	in	the	database.	These	stored	procedures	are
preparsed	and	are	immediately	ready	to	execute	when	the	user	invokes	them.

The	Microsoft	SQL	Server	syntax	for	creating	a	stored	procedure	follows:
Click	here	to	view	code	image

CREATE	PROCEDURE	PROCEDURE_NAME
[[(]	@PARAMETER_NAME
DATATYPE	[(LENGTH)	|	(PRECISION]	[,	SCALE])
[=	DEFAULT][OUTPUT]]
[,	@PARAMETER_NAME
DATATYPE	[(LENGTH)	|	(PRECISION	[,	SCALE])
[=	DEFAULT][OUTPUT]]	[)]]

[WITH	RECOMPILE]
AS	SQL_STATEMENTS

The	syntax	for	Oracle	follows:
Click	here	to	view	code	image

CREATE	[OR	REPLACE]	PROCEDURE	PROCEDURE_NAME
[(ARGUMENT	[{IN	|	OUT	|	IN	OUT}]	TYPE,
ARGUMENT	[{IN	|	OUT	|	IN	OUT}]	TYPE)]	{IS	|	AS}
PROCEDURE_BODY

An	example	of	a	simple	stored	procedure	to	insert	new	rows	into	the	AIRCRAFTFLEET
table	follows:
Click	here	to	view	code	image

CREATE	PROCEDURE	NEW_AIRCRAFTFLEET
(@AIRCRAFTCODE	VARCHAR(3),	@AIRCRAFTDESIGNATOR	VARCHAR(10),	@STATUS
VARCHAR(50),	@
HOMEAIRPORTID	INT)
AS
BEGIN
		INSERT	INTO
AircraftFleet(AircraftCode,AircraftDesignator,Status,HomeAirportID)
		VALUES	(@AIRCRAFTCODE,@AIRCRAFTDESIGNATOR,	@STATUS,	@HOMEAIRPORTID);
END;
Procedure	created.

The	syntax	for	executing	a	stored	procedure	in	Microsoft	SQL	Server	follows:
Click	here	to	view	code	image

EXECUTE	[@RETURN_STATUS	=]
PROCEDURE_NAME

[[@PARAMETER_NAME	=]	VALUE	|
[@PARAMETER_NAME	=]	@VARIABLE	[OUTPUT]]
[WITH	RECOMPILE]

The	syntax	for	Oracle	follows:
Click	here	to	view	code	image

EXECUTE	[@RETURN	STATUS	=]	PROCEDURE	NAME
[[@PARAMETER	NAME	=]	VALUE	|	[@PARAMETER	NAME	=]	@VARIABLE	[OUTPUT]]]
[WITH	RECOMPILE]

Note:	Basic	SQL	Commands	Are	Often	the	Same

You	might	find	distinct	differences	between	the	allowed	syntax	used	to	code
procedures	in	different	implementations	of	SQL.	The	basic	SQL	commands	should
be	the	same,	but	the	programming	constructs	(variables,	conditional	statements,
cursors,	and	loops)	might	vary	drastically	among	implementations.

The	following	example	executes	the	procedure	you	have	created	in	Oracle:
Click	here	to	view	code	image

CALL	NEW_AIRCRAFTFLEET	(‘999’,‘ZZZ-1’,‘ACTIVE’,3160);
PL/SQL	procedure	successfully	completed.

Stored	procedures	provide	several	distinct	advantages	over	individual	SQL	statements
executed	in	the	database.	Some	of	these	advantages	include	the	following:

	The	statements	are	already	stored	in	the	database.

	The	statements	are	already	parsed	and	in	an	executable	format.

	Stored	procedures	support	modular	programming.

	Stored	procedures	can	call	other	procedures	and	functions.

	Stored	procedures	can	be	called	by	other	types	of	programs.

	Overall	response	time	is	typically	better	with	stored	procedures.

	Stored	procedures	increase	the	overall	ease	of	use.

Triggers
A	trigger	is	a	compiled	SQL	procedure	in	the	database	that	performs	actions	based	on
other	actions	occurring	within	the	database.	A	trigger	is	a	form	of	a	stored	procedure	that
is	executed	when	a	specified	DML	action	is	performed	on	a	table.	The	trigger	can	be
executed	before	or	after	an	INSERT,	DELETE,	or	UPDATE	statement.	Triggers	can	also
check	data	integrity	before	an	INSERT,	DELETE,	or	UPDATE	statement.	Triggers	can	roll
back	transactions,	and	they	can	modify	data	in	one	table	and	read	from	another	table	in
another	database.

Triggers,	for	the	most	part,	are	good	functions	to	use;	they	can,	however,	cause	more	I/O
overhead.	Triggers	should	not	be	used	when	a	stored	procedure	or	a	program	can
accomplish	the	same	results	with	less	overhead.

The	CREATE	TRIGGER	Statement
You	can	create	a	trigger	using	the	CREATE	TRIGGER	statement.

The	ANSI	standard	syntax	is
Click	here	to	view	code	image

CREATE	TRIGGER	TRIGGER	NAME
[[BEFORE	|	AFTER]	TRIGGER	EVENT	ON	TABLE	NAME]
[REFERENCING	VALUES	ALIAS	LIST]
[TRIGGERED	ACTION
TRIGGER	EVENT::=
INSERT	|	UPDATE	|	DELETE	[OF	TRIGGER	COLUMN	LIST]
TRIGGER	COLUMN	LIST	::=	COLUMN	NAME	[,COLUMN	NAME]
VALUES	ALIAS	LIST	::=
VALUES	ALIAS	LIST	::=
OLD	[ROW]	´	OLD	VALUES	CORRELATION	NAME	|
NEW	[ROW]	´	NEW	VALUES	CORRELATION	NAME	|
OLD	TABLE	´	OLD	VALUES	TABLE	ALIAS	|
NEW	TABLE	´	NEW	VALUES	TABLE	ALIAS
OLD	VALUES	TABLE	ALIAS	::=	IDENTIFIER
NEW	VALUES	TABLE	ALIAS	::=	IDENTIFIER
TRIGGERED	ACTION	::=
[FOR	EACH	[ROW	|	STATEMENT]	[WHEN	SEARCH	CONDITION]]
TRIGGERED	SQL	STATEMENT
TRIGGERED	SQL	STATEMENT	::=
SQL	STATEMENT	|	BEGIN	ATOMIC	[SQL	STATEMENT;]
END

The	Microsoft	SQL	Server	syntax	to	create	a	trigger	follows:

Click	here	to	view	code	image

CREATE	TRIGGER	TRIGGER_NAME
ON	TABLE_NAME
FOR	{	INSERT	|	UPDATE	|	DELETE	[,	..]}
AS
SQL_STATEMENTS

[RETURN]

The	basic	syntax	for	Oracle	follows:
Click	here	to	view	code	image

CREATE	[OR	REPLACE]	TRIGGER	TRIGGER_NAME
[BEFORE	|	AFTER]
[DELETE	|	INSERT	|	UPDATE]
ON	[USER.TABLE_NAME]
[FOR	EACH	ROW]
[WHEN	CONDITION]
[PL/SQL	BLOCK]

The	following	is	an	example	trigger	written	in	the	Oracle	syntax:
Click	here	to	view	code	image

CREATE	TRIGGER	EMP_PAY_TRIG
AFTER	UPDATE	ON	EMPLOYEES
FOR	EACH	ROW
WHEN	(NEW.PAY_RATE<>OLD.PAY_RATE	OR	NEW.SALARY<>OLD.SALARY)
BEGIN
		INSERT	INTO	EMPLOYEE_PAY_HISTORY
		(EMPLOYEEID,	PREV_PAY_RATE,	PAY_RATE,	PREV_SALARY,	SALARY,	DATE_UPDATED)
		VALUES
		(NEW.EMPLOYEEID,	OLD.PAY_RATE,	NEW.PAY_RATE,
			OLD.SALARY,	NEW.SALARY,	SYSDATE);
END;
/
Trigger	created.

The	preceding	example	shows	the	creation	of	a	trigger	called	EMP_PAY_TRIG.	This
trigger	inserts	a	row	into	the	EMPLOYEE_PAY_HISTORY	table,	reflecting	the	changes
made	every	time	either	the	PAY_RATE	or	the	SALARY	is	updated	in	EMPLOYEES.

Tip:	Triggers	Cannot	Be	Altered

You	cannot	alter	the	body	of	a	trigger.	You	must	either	replace	or	re-create	the
trigger.	Some	implementations	allow	a	trigger	to	be	replaced	(if	the	trigger	with	the
same	name	already	exists)	as	part	of	the	CREATE	TRIGGER	statement.

The	DROP	TRIGGER	Statement
You	can	drop	a	trigger	using	the	DROP	TRIGGER	statement.	The	syntax	for	dropping	a
trigger	follows:

DROP	TRIGGER	TRIGGER_NAME

Dynamic	SQL
Dynamic	SQL	allows	a	programmer	or	end	user	to	create	a	SQL	statement’s	specifics	at
runtime	and	pass	the	statement	to	the	database.	The	database	then	returns	data	into	the
program	variables,	which	are	bound	at	SQL	runtime.

To	comprehend	dynamic	SQL,	you	must	understand	static	SQL.	Static	SQL	is	what	this
book	has	discussed	thus	far.	A	static	SQL	statement	is	written	and	not	meant	to	be
changed.	Although	static	SQL	statements	can	be	stored	as	files	ready	to	be	executed	later
or	as	stored	procedures	in	the	database,	static	SQL	does	not	quite	offer	the	flexibility	that
is	allowed	with	dynamic	SQL.

The	problem	with	static	SQL	is	that	even	though	numerous	queries	might	be	available	to
the	end	user,	there	is	a	good	chance	that	none	of	these	“canned”	queries	will	satisfy	the
users’	needs	on	every	occasion.	Dynamic	SQL	is	often	used	by	ad	hoc	query	tools,	which
allow	a	SQL	statement	to	be	created	on-the-fly	by	a	user	to	satisfy	the	particular	query
requirements	for	that	particular	situation.	After	the	statement	is	customized	according	to
the	user’s	needs,	the	statement	is	sent	to	the	database,	checked	for	syntax	errors	and
privileges	required	to	execute	the	statement,	and	compiled	in	the	database	where	the
database	server	carries	out	the	statement.	Dynamic	SQL	can	be	created	by	using	a	call-
level	interface,	which	is	explained	in	the	next	section.

Note:	Dynamic	SQL	Is	Not	Always	the	Most	Performant

Although	dynamic	SQL	provides	more	flexibility	for	the	end	user’s	query	needs,
the	performance	might	not	compare	to	that	of	a	stored	procedure	whose	code	has
already	been	analyzed	by	the	SQL	optimizer.

Call-Level	Interface
A	call-level	interface	(CLI)	embeds	SQL	code	in	a	host	program,	such	as	ANSI	C.
Application	programmers	should	be	familiar	with	the	concept	of	a	CLI.	It	is	one	of	the
methods	that	allows	a	programmer	to	embed	SQL	in	different	procedural	programming
languages.	When	using	a	CLI,	you	simply	pass	the	text	of	a	SQL	statement	into	a	variable
using	the	rules	of	the	host	programming	language.	You	can	execute	the	SQL	statement	in
the	host	program	through	the	use	of	the	variable	into	which	you	passed	the	SQL	text.

EXEC	SQL	is	a	common	host	programming	language	command	that	enables	you	to	call	a
SQL	statement	(CLI)	from	within	the	program.

The	following	are	examples	of	programming	languages	that	support	CLI:

	ANSI	C

	C#

	VB.NET

	Java

	Pascal

	Fortran

Note:	CLIs	Are	Platform-Specific

Refer	to	the	syntax	of	the	host	programming	language	with	which	you	are	using
CLI	options.	The	CLI	programming	language	is	always	platform-specific;	so,	an
Oracle	CLI	does	not	work	with	a	SQL	Server	CLI.

Using	SQL	to	Generate	SQL
Using	SQL	to	generate	SQL	is	a	valuable	time-budgeting	method	of	writing	SQL
statements.	Assume	you	have	100	users	in	the	database	already.	A	new	role,	ENABLE	(a
user-defined	object	that	is	granted	privileges),	has	been	created	and	must	be	granted	to
those	100	users.	Instead	of	manually	creating	100	GRANT	statements,	the	following	SQL
statement	generates	each	of	those	statements	for	you:
Click	here	to	view	code	image

SELECT	‘GRANT	ENABLE	TO	‘||	USERNAME||’;’
FROM	SYS.DBA_USERS;

This	example	uses	Oracle’s	system	catalog	view	(which	contains	information	for	users).

Notice	the	use	of	single	quotation	marks	around	GRANT	ENABLE	TO.	The	use	of	single
quotation	marks	allows	whatever	is	between	the	marks	(including	spaces)	to	be	literal.
Remember	that	literal	values	can	be	selected	from	tables,	the	same	as	columns	from	a
table.	USERNAME	is	the	column	in	the	system	catalog	table	SYS.DBA_USERS.	The
double	pipe	signs	(||)	concatenate	the	columns.	The	use	of	double	pipes	followed	by	;
concatenates	the	semicolon	to	the	end	of	the	username,	thus	completing	the	statement.

The	results	of	the	SQL	statement	look	like	the	following:
GRANT	ENABLE	TO	RRPLEW;
GRANT	ENABLE	TO	RKSTEP;

You	should	spool	these	results	to	a	file,	which	can	be	sent	to	the	database.	The	database,	in
turn,	executes	each	SQL	statement	in	the	file,	saving	you	many	keystrokes	and	much	time.
The	GRANT	ENABLE	TO	USERNAME	statement	is	repeated	once	for	every	user	in	the
database.

The	next	time	you	write	SQL	statements	and	have	repeated	the	same	statement	several
times,	allow	your	imagination	to	take	hold,	and	let	SQL	do	the	work	for	you.

Direct	Versus	Embedded	SQL
Direct	SQL	is	where	a	SQL	statement	is	executed	from	some	form	of	an	interactive
terminal.	The	SQL	results	are	returned	directly	to	the	terminal	that	issued	the	statement.
Most	of	this	book	has	focused	on	direct	SQL.	Direct	SQL	is	also	referred	to	as	interactive
invocation	or	direct	invocation.

Embedded	SQL	is	SQL	code	used	within	other	programs,	such	as	Pascal,	Fortran,
COBOL,	and	C.	SQL	code	is	actually	embedded	in	a	host	programming	language,	as
discussed	previously,	with	a	call-level	interface.	Embedded	SQL	statements	in	host

programming	language	codes	are	commonly	preceded	by	EXEC	SQL	and	terminated	by	a
semicolon.	Other	termination	characters	include	END-EXEC	and	the	right	parenthesis.

The	following	is	an	example	of	embedded	SQL	in	a	host	program,	such	as	the	ANSI	C
language:
Click	here	to	view	code	image

{HOST	PROGRAMMING	COMMANDS}
EXEC	SQL	{SQL	STATEMENT};
{MORE	HOST	PROGRAMMING	COMMANDS}

Windowed	Table	Functions
Windowed	table	functions	allow	calculations	to	operate	over	a	window	of	the	table	and
return	a	value	based	upon	that	window.	This	allows	for	the	calculation	of	values	such	as	a
running	sum,	ranks,	and	moving	averages.	The	syntax	for	the	table	valued	function
follows:
Click	here	to	view	code	image

ARGUMENT	OVER	([PARTITION	CLAUSE]	[ORDER	CLAUSE]	[FRAME	CLAUSE])

Almost	all	aggregate	functions	can	act	as	windowed	table	functions.	They	provide	five
new	windowed	table	functions:

	RANK()	OVER

	DENSE_RANK()	OVER

	PERCENT_RANK()	OVER

	CUME_DIST()	OVER

	ROW_NUMBER()	OVER

Normally,	it	would	be	difficult	to	calculate	something	such	as	an	individual’s	ranking
within	their	location.	Windowed	table	functions	would	make	this	calculation	a	little	easier,
as	shown	in	the	following	example	for	Microsoft	SQL	Server:
Click	here	to	view	code	image

SELECT	EMPLOYEEID,	SALARY,	RANK()	OVER	(PARTITION	BY	AIRPORTID
ORDER	BY	SALARY	DESC)	AS	RANK_IN_LOCATION
FROM	EMPLOYEES;

Not	all	RDBM	implementations	currently	support	windowed	table	functions,	so	it	is	best
to	check	the	documentation	of	your	specific	implementation.

Working	with	XML
The	ANSI	standard	presented	an	XML-related	features	section	in	its	2003	version.	Since
then,	most	database	implementations	have	tried	to	support	at	least	part	of	the	released
feature	set.	For	example,	one	part	of	the	ANSI	standard	is	to	provide	for	the	output	of
XML-formatted	output	from	a	query.	SQL	Server	provides	such	a	method	by	using	the
FOR	XML	statement,	as	shown	in	the	following	example:
Click	here	to	view	code	image

SELECT	EMP_ID,	HIRE_DATE,	SALARY	FROM
EMPLOYEE_TBL	FOR	XML	AUTO

Another	important	feature	of	the	XML	feature	set	is	retrieving	information	from	an	XML
document	or	fragment.	Oracle	provides	this	functionality	through	the	EXTRACTVALUE
function.	This	function	takes	two	arguments.	The	first	is	an	XML	fragment,	and	the
second	is	the	locator,	which	returns	the	first	value	of	the	tags	matched	by	the	string.	The
syntax	is	shown	here:
Click	here	to	view	code	image

ExtractValue([XML	Fragment],[locator	string])

The	following	is	an	example	of	using	the	function	to	extract	the	value	in	the	node	a:
Click	here	to	view	code	image

SELECT	EXTRACTVALUE(‘<a>Red<//a>Blue’,’/a’)	as	ColorValue;
ColorValue
Red

It	is	important	to	check	your	individual	database’s	documentation	to	see	exactly	what
XML	support	is	provided.	Some	implementations,	such	as	SQL	Server	and	Oracle,	have
advanced	functionality	such	as	specific	XML	data	types.	For	example,	Oracle’s	XMLTYPE
provides	a	specific	API	to	handle	the	most	used	functions	with	XML	data,	such	as	finding
and	extracting	values.	Microsoft	SQL	Server’s	XML	data	type	allows	for	the	application	of
templates	to	ensure	that	the	XML	data	input	into	the	column	is	complete.

Summary
Some	advanced	SQL	concepts	were	discussed	in	this	hour.	Although	this	hour	did	not	go
into	a	lot	of	detail,	it	did	provide	you	with	a	basic	understanding	of	how	you	can	apply	the
fundamental	concepts	that	you	have	learned	up	to	this	point.	You	start	with	cursors,	which
pass	a	data	set	selected	by	a	query	into	a	location	in	memory.	After	a	cursor	is	declared	in
a	program,	you	must	open	it	for	accessibility.	Then	the	contents	of	the	cursor	are	fetched
into	a	variable,	at	which	time	the	data	can	be	used	for	program	processing.	The	resultset
for	the	cursor	is	contained	in	memory	until	the	cursor	is	closed	and	the	memory	is
deallocated.

Stored	procedures	and	triggers	were	covered	next.	Stored	procedures	are	basically	SQL
statements	that	are	stored	together	in	the	database.	These	statements,	along	with	other
implementation-specific	commands,	are	compiled	in	the	database	and	are	ready	for	a
database	user	to	execute	at	any	given	time.	Stored	procedures	typically	provide	better
performance	benefits	than	individual	SQL	statements.

This	chapter	also	discussed	dynamic	SQL,	using	SQL	to	generate	other	SQL	statements,
and	the	differences	between	direct	SQL	and	embedded	SQL.	Dynamic	SQL	is	SQL	code
that	a	user	dynamically	creates	during	runtime,	unlike	static	SQL.

Lastly,	we	discussed	windowed	table	functions	and	XML.	These	features	may	not	yet	be
supported	in	your	database	version	because	they	are	relatively	new	but	are	good	to	know
for	future	reference.	The	concepts	of	some	of	the	advanced	topics	discussed	during	this
hour	illustrate	the	application	of	SQL	in	an	enterprise,	covered	in	Hour	23,	“Extending
SQL	to	the	Enterprise,	the	Internet,	and	the	Intranet.”

Q&A
Q.	Can	a	stored	procedure	call	another	stored	procedure?

A.	Yes,	the	stored	procedure	called	is	referred	to	as	nested.

Q.	How	do	I	execute	a	cursor?

A.	Simply	use	the	OPEN	CURSOR	statement.	This	sends	the	results	of	the	cursor	to	a
staging	area.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	Can	a	trigger	be	altered?

2.	When	a	cursor	is	closed,	can	you	reuse	the	name?

3.	Which	command	retrieves	the	results	after	a	cursor	has	been	opened?

4.	Are	triggers	executed	before	or	after	an	INSERT,	DELETE,	or	UPDATE	statement?

5.	Which	MySQL	function	retrieves	information	from	an	XML	fragment?

6.	Why	does	Oracle	not	support	the	DEALLOCATE	syntax	for	cursors?

7.	Why	is	a	cursor	not	considered	a	set-based	operation?

Exercises
1.	Enter	a	command	similar	to	the	one	that	follows	for	SQL	Server	to	write	out	SQL
statements	to	DESCRIBE	each	table	in	the	database:

Click	here	to	view	code	image
SELECT	CONCAT(‘DESCRIBE	‘,TABLE_NAME,’;’)	FROM	INFORMATION_SCHEMA.TABLES;

2.	Write	a	SELECT	statement	that	generates	the	SQL	code	to	count	all	rows	in	each	of
your	tables.	(Hint:	It	is	similar	to	Exercise	1.)

3.	Write	a	series	of	SQL	commands	to	create	a	cursor	that	prints	each	airport	name	and
the	total	number	of	flights	originating	from	the	airport	for	each	month.	Ensure	that
the	cursor	is	properly	closed	and	deallocated	based	on	which	implementation	you
use.

Hour	23.	Extending	SQL	to	the	Enterprise,	the	Internet,	and
the	Intranet

What	You’ll	Learn	in	This	Hour:

	SQL	and	the	enterprise

	Front-end	and	back-end	applications

	Accessing	a	remote	database

	SQL	and	the	Internet

	SQL	and	the	intranet

The	previous	hour	covered	some	advanced	SQL	topics.	These	topics	build	on	earlier	hours
in	the	book	and	show	you	practical	applications	for	the	SQL	you	have	learned.	In	this
hour,	you	focus	on	the	concepts	behind	extending	SQL	to	the	enterprise,	which	involve
SQL	applications	and	making	data	available	to	all	appropriate	members	of	a	company	for
daily	use.

SQL	and	the	Enterprise
Many	commercial	enterprises	have	specific	data	available	to	other	enterprises,	customers,
and	vendors.	For	example,	the	enterprise	might	have	detailed	information	on	its	products
available	for	customers	to	access	in	hopes	of	acquiring	more	purchases.	Enterprise
employee	needs	are	included	as	well.	For	example,	employee-specific	data	can	be	made
available,	such	as	for	timesheet	logs,	vacation	schedules,	training	schedules,	company
policies,	and	so	on.	A	database	can	be	created,	and	customers	and	employees	can	be
allowed	easy	access	to	an	enterprise’s	important	data	via	SQL	and	an	Internet	language.

The	Back-End	Application
The	heart	of	any	application	is	the	back-end	application.	This	is	where	things	happen
behind	the	scenes,	transparent	to	the	database	end	user.	The	back-end	application	includes
the	actual	database	server,	the	data	sources,	and	the	appropriate	middleware	that	connects
an	application	to	the	Web	or	a	remote	database	on	the	local	network.

Determining	your	database	implementation	is	typically	the	first	step	in	deploying	any
application,	either	to	the	enterprise	through	a	local	area	network	(LAN),	to	the	enterprise’s
own	intranet,	or	to	the	Internet.	Deploying	describes	the	process	of	implementing	an
application	in	an	environment	that	is	available	for	use.	The	database	server	should	be
established	by	an	onsite	database	administrator	(DBA)	who	understands	the	company’s
needs	and	the	application’s	requirements.

The	middleware	for	the	application	includes	a	web	server	and	a	tool	capable	of	connecting
the	web	server	to	the	database	server.	The	main	objective	is	to	have	an	application	that	can
communicate	with	a	corporate	database.

The	Front-End	Application
The	front-end	application	is	the	part	of	an	application	with	which	an	end	user	interacts.
The	front-end	application	is	either	a	commercial,	off-the-shelf	software	product	that	a
company	purchases	or	an	application	that	is	developed	in-house	using	other	third-party
tools.	Commercial	software	can	include	applications	that	utilize	a	web	browser	to	display
content.	In	the	Web	environment,	web	browsers	such	as	Firefox	and	Internet	Explorer
(now	called	Microsoft	Edge	in	new	versions)	are	often	used	to	access	database
applications.	This	allows	users	to	have	access	to	the	database	without	having	to	install
special	software.

Tip:	There	Are	Many	Different	Layers	to	an	Application

The	front-end	application	promotes	simplicity	for	the	database	end	user.	The
underlying	database,	code,	and	events	that	occur	within	the	database	are	transparent
to	the	user.	The	front-end	application	is	developed	to	relieve	the	end	user	from
guesswork	and	confusion,	which	might	otherwise	be	caused	by	having	to	be	too
intuitive	to	the	system.	The	new	technologies	allow	the	applications	to	be	more
intuitive,	enabling	the	end	users	to	focus	on	the	true	aspects	of	their	particular	jobs,
thereby	increasing	overall	productivity.

The	tools	available	for	developers	today	are	user-friendly	and	object-oriented	by	way	of
icons,	wizards,	and	dragging	and	dropping	with	the	mouse.	Some	of	the	popular	tools	to
port	applications	to	the	Web	include	Borland’s	C++Builder	and	IntraBuilder	and
Microsoft’s	Visual	Studio.	Other	popular	applications	used	to	develop	corporate-based
applications	on	a	LAN	include	PowerBuilder	by	Powersoft,	Oracle	Forms	by	Oracle
Corporation,	and	Delphi	by	Borland.

Figure	23.1	illustrates	the	back-end	and	front-end	components	of	a	database	application.
The	back-end	resides	on	the	host	server,	where	the	database	resides.	Back-end	users
include	developers,	programmers,	DBAs,	system	administrators,	and	system	analysts.	The
front-end	application	resides	on	the	client	machine,	which	is	typically	each	end	user’s	PC.
End	users	are	the	vast	audience	for	the	front-end	component	of	an	application,	which	can
include	users	such	as	data	entry	clerks	and	accountants.	The	end	user	can	access	the	back-
end	database	through	a	network	connection—either	a	LAN	or	a	wide	area	network	(WAN).
Some	type	of	middleware	(such	as	an	ODBC	driver)	provides	a	connection	between	the
front-end	and	back-end	through	the	network.

FIGURE	23.1	Back-end	and	front-end	of	a	database	application

Accessing	a	Remote	Database
Sometimes,	the	database	you	are	accessing	is	a	local	one	to	which	you	are	directly
connected.	For	the	most	part,	you	will	probably	access	some	form	of	a	remote	database.	A
remote	database	is	one	that	is	nonlocal,	or	located	on	a	server	other	than	the	server	to
which	you	are	currently	connected,	meaning	that	you	must	utilize	the	network	and	some
network	protocol	to	interface	with	the	database.

You	can	access	a	remote	database	in	several	ways.	From	a	broad	perspective,	a	remote
database	is	accessed	via	the	network	or	Internet	connection	using	a	middleware	product.
(Both	ODBC	and	JDBC,	standard	middleware,	are	discussed	in	the	next	section.)	Figure
23.2	shows	three	scenarios	for	accessing	a	remote	database.

FIGURE	23.2	Scenarios	for	accessing	a	remote	database

Figure	23.2	shows	access	to	a	remote	server	from	another	local	database	server,	a	local
front-end	application,	and	a	local	host	server.	The	local	database	server	and	local	host
server	are	often	the	same	because	the	database	normally	resides	on	a	local	host	server.
However,	you	can	usually	connect	to	a	remote	database	from	a	local	server	without	a
current	local	database	connection.	For	the	end	user,	the	front-end	application	is	the	most
typical	method	of	remote	database	access.	All	methods	must	route	their	database	requests
through	the	network.

ODBC
Open	Database	Connectivity	(ODBC)	allows	connections	to	remote	databases	through	a
library	driver.	A	front-end	application	uses	an	ODBC	driver	to	interface	with	a	back-end
database.	A	network	driver	might	also	be	required	for	a	connection	to	a	remote	database.
An	application	calls	the	ODBC	functions,	and	a	driver	manager	loads	the	ODBC	driver.
The	ODBC	driver	processes	the	call,	submits	the	SQL	request,	and	returns	the	results	from
the	database.

As	a	part	of	ODBC,	all	the	relational	database	management	system	(RDBMS)	vendors
have	an	application	programming	interface	(API)	with	their	database.

JDBC
Like	ODBC,	Java	Database	Connectivity	(JDBC)	allows	connections	to	remote	databases
through	a	Java	library	driver.	A	front-end	Java	application	uses	the	JDBC	driver	to
interface	with	a	back-end	database.

OLE	DB
OLE	DB	is	a	set	of	interfaces	written	using	the	Component	Object	Model	(COM)	by
Microsoft	as	a	replacement	for	ODBC.	The	implementation	of	OLE	DB	attempts	to
extend	the	feature	set	of	ODBC	and	address	connectivity	not	only	to	various	database
implementations	but	also	to	nondatabase	data	stored,	such	as	spreadsheets.

Vendor	Connectivity	Products
In	addition	to	drivers	or	an	API,	many	vendors	have	their	own	products	that	allow	a	user
to	connect	to	a	remote	database.	Each	of	these	vendor	products	is	specific	to	the	particular
vendor	implementation	and	might	not	be	portable	to	other	types	of	database	servers.

Oracle	Corporation	has	a	product	called	Oracle	Fusion	Middleware	that	allows
connectivity	to	the	Oracle	database	as	well	as	other	applications.

Microsoft	produces	several	products	for	interacting	with	its	database,	such	as	Microsoft
SharePoint	Server	and	SQL	Server	Reporting	Services.

Web	Interface
Accessing	a	remote	database	through	a	web	interface	is	similar	to	accessing	one	through	a
local	network.	The	main	difference	is	that	all	requests	to	the	database	from	the	user	are
routed	through	the	web	server	(see	Figure	23.3).

FIGURE	23.3	A	web	interface	to	a	remote	database

You	can	see	in	Figure	23.3	that	an	end	user	accesses	a	database	through	a	web	interface	by
first	invoking	a	web	browser.	The	web	browser	connects	to	a	particular	URL,	determined
by	the	location	of	the	web	server.	The	web	server	authenticates	user	access	and	sends	the
user	request,	perhaps	a	query,	to	the	remote	database,	which	might	also	verify	user
authenticity.	The	database	server	then	returns	the	results	to	the	web	server,	which	displays
the	results	on	the	user’s	web	browser.	Using	a	firewall	can	control	unauthorized	access	to
a	particular	server.

A	firewall	is	a	security	mechanism	that	ensures	against	unauthorized	connections	to	and
from	a	server.	One	or	multiple	firewalls	can	be	enabled	to	patrol	access	to	a	database	or
server.

In	addition,	certain	database	implementations	allow	you	to	restrict	access	to	them	via	an	IP
address.	This	provides	another	layer	of	protection	because	you	can	limit	your	traffic	that
has	access	to	the	database	to	the	actual	set	of	web	servers	that	are	acting	as	the	application
layer.

Caution:	Be	Mindful	of	Security	Concerns	with	the	Internet

Be	careful	what	information	you	make	available	on	the	Web.	Always	take
precautions	to	properly	implement	security	at	all	appropriate	levels;	that	might
include	the	web	server,	the	host	server,	and	the	remote	database.	Be	especially
careful	with	Privacy	Act	data,	such	as	individuals’	Social	Security	numbers;	protect
that	data,	and	don’t	broadcast	it	over	the	Web.

SQL	and	the	Internet
You	can	embed	SQL	or	use	it	with	programming	languages	such	as	C#	and	Java.	You	can
also	embed	SQL	in	Internet	programming	languages,	such	as	Java	and	ASP.NET.	Text
from	Hypertext	Markup	Language	(HTML),	another	Internet	language,	can	be	translated
into	SQL	to	send	a	query	to	a	remote	database	from	a	Web	front-end.	After	the	database
resolves	the	query,	the	output	is	translated	back	into	HTML	and	displayed	on	the	web
browser	of	the	individual	executing	the	query.	The	following	sections	discuss	the	use	of
SQL	on	the	Internet.

Making	Data	Available	to	Customers	Worldwide
With	the	advent	of	the	Internet,	data	became	available	to	customers	and	vendors
worldwide.	The	data	is	normally	available	for	read-only	access	through	a	front-end	tool.

The	data	that	is	available	to	customers	can	contain	general	customer	information,	product
information,	invoice	information,	current	orders,	back	orders,	and	other	pertinent
information.	Private	information,	such	as	corporate	strategies	and	employee	information,
should	not	be	available.

Home	web	pages	on	the	Internet	have	become	nearly	a	necessity	for	companies	that	want
to	keep	pace	with	their	competition.	A	web	page	is	a	powerful	tool	that	can	tell	viewers	all
about	a	company—its	services,	products,	and	other	information—with	little	overhead.

Making	Data	Available	to	Employees	and	Privileged	Customers
A	database	can	be	made	accessible	through	the	Internet	or	a	company’s	intranet	to
employees	or	customers.	Using	Internet	technologies	is	a	valuable	communication	asset
for	keeping	employees	informed	about	company	policies,	benefits,	training,	and	so	on.
However,	you	must	be	careful	when	making	information	available	to	Web	users.
Confidential	corporate	or	individual	information	should	not	be	accessible	on	the	Web	if
possible.	In	addition,	only	a	subset,	or	copy	of	a	subset	of	a	database,	should	be	accessible
online.	The	main	production	database(s)	should	be	protected	at	all	costs.

Tip:	Internet	Security	Is	a	Far	Less	Stable	Platform

Database	security	is	much	more	stable	than	security	on	the	Internet	because
database	security	can	be	fine-tuned	down	to	the	specific	levels	of	the	data	contained
in	the	system.	Although	you	can	implement	some	security	features	for	data	access
through	the	Internet,	these	are	generally	limited	and	not	as	easily	changed	as	those
on	the	database.	Always	be	sure	to	use	the	security	features	available	to	you
through	your	database	server.

SQL	and	the	Intranet
IBM	originally	created	SQL	for	use	between	databases	located	on	mainframe	computers
and	the	users	on	client	machines.	The	users	were	connected	to	the	mainframes	via	a	LAN.
SQL	was	adopted	as	the	standard	language	of	communication	between	databases	and
users.	An	intranet	is	basically	a	small	Internet.	The	main	difference	is	that	an	intranet	is
for	a	single	organization’s	use,	whereas	the	Internet	is	accessible	to	the	general	public.	The
user	(client)	interface	in	an	intranet	remains	the	same	as	that	in	a	client/server
environment.	SQL	requests	are	routed	through	the	web	server	and	languages	(such	as
HTML)	before	being	directed	to	the	database	for	evaluation.	An	intranet	is	primarily	used
for	inner-corporate	applications,	documents,	forms,	web	pages,	and	email.

SQL	requests	made	through	the	Internet	must	be	extremely	cognizant	of	performance.	In
these	scenarios,	not	only	must	the	data	be	retrieved	from	the	database,	but	it	also	must	be
presented	to	the	user	through	her	browser.	This	normally	involves	transforming	the	data
into	some	kind	of	HTML-compliant	code	to	be	displayed	on	the	user’s	browser.	The	web
connection	might	be	slower	than	a	normal	intranet	connection;	therefore,	the	sending	of
the	data	back	and	forth	might	be	slower	as	well.

Security	should	play	an	important	role	in	a	database	implementation	that	is	exposed	via
the	Web.	A	couple	considerations	must	be	taken	into	account	to	ensure	that	your	data	is
protected.	First,	if	the	data	is	exposed	over	public	networks,	you	must	try	to	ensure	that	the
data	is	protected	from	outside	sources	that	may	try	to	pick	up	that	traffic.	Normally,	data	is
transferred	in	plain	text	format	so	that	anyone	can	read	it.	You	might	consider	as	part	of
your	security	implementation	using	a	Secure	Socket	Layer	(SSL)	to	protect	the
communication.	This	method	uses	a	certificate	to	encrypt	the	data	between	the	client	and
the	application	and	is	typically	identified	by	a	website	beginning	with	HTTPS,	with	the	S
on	the	end	standing	for	secure.

Another	typical	consideration	is	protecting	against	unintended	data	entry	through	data
validation.	This	can	be	simply	from	the	user	or	application	entering	the	wrong	type	of	data
into	the	wrong	field	or	something	more	nefarious	such	as	a	SQL	injection	attack,	where	a
hacker	tries	to	inject	his	own	SQL	code	onto	the	database	to	be	run.

The	best	way	to	protect	against	these	types	of	problems	is	to	restrict	access	for	the	user
accounts	accessing	the	database	from	the	application.	A	good	way	to	accomplish	this	is	to
use	stored	procedures	and	functions	whenever	possible	for	the	calls	against	the	database.
This	gives	you	more	control	over	how	the	data	gets	out	of	the	system	and	how	the	data
gets	in.	In	addition,	it	allows	you	to	perform	whatever	data	validation	steps	may	be
necessary	from	the	DBA’s	point	of	view	to	ensure	that	the	data	remains	consistent.

Summary
Some	concepts	behind	deploying	SQL	and	database	applications	to	the	Internet	were
discussed	in	this	hour.	Companies	need	to	remain	competitive.	To	keep	up	with	the	rest	of
the	world,	it	is	almost	mandatory	to	obtain	a	presence	on	the	World	Wide	Web.	In
establishing	this	presence,	applications	must	be	developed	and	even	migrated	from
client/server	systems	to	the	Internet	on	a	web	server.	One	of	the	greatest	concerns	when
publishing	any	kind	or	any	amount	of	corporate	data	on	the	Web	is	security.	Security	must
be	considered,	adhered	to,	and	strictly	enforced.

This	hour	discussed	accessing	remote	databases	across	local	networks	as	well	as	over	the
Internet.	Each	major	method	for	accessing	any	type	of	a	remote	database	requires	the	use
of	network	and	protocol	adapters	used	to	translate	requests	to	the	database.	This	has	been
a	broad	overview	of	the	application	of	SQL	over	local	networks,	company	intranets,	and
the	Internet.

Q&A
Q.	Why	is	it	important	to	know	if	your	data	is	accessed	over	a	public	network	via
the	Internet?

A.	The	data	that	is	sent	between	a	client	and	a	web	application	is	often	just	plain	text.
That	means	that	anyone	could	intercept	the	traffic	and	see	exactly	what	the	individual
saw,	such	as	sensitive	data	like	Social	Security	numbers	or	account	numbers.	You
need	to	encrypt	data	whenever	possible.

Q.	Is	a	back-end	database	for	a	web	application	any	different	from	a	back-end
database	for	a	client/server	system?

A.	The	back-end	database	itself	for	a	web	application	is	not	necessarily	different	from
that	of	a	client/server	system.	However,	other	requirements	must	be	met	to	implement
a	web-based	application.	For	example,	a	web	server	accesses	the	database	with	a	web
application.	With	a	web	application,	end	users	do	not	typically	connect	directly	to	the
database.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	Can	a	database	on	a	server	be	accessed	from	another	server?

2.	What	can	a	company	use	to	disseminate	information	to	its	own	employees?

3.	What	are	products	that	allow	connections	to	databases	called?

4.	Can	SQL	be	embedded	into	Internet	programming	languages?

5.	How	is	a	remote	database	accessed	through	a	web	application?

Exercises
1.	Connect	to	the	Internet	and	look	at	various	companies’	home	pages.	If	your	own
company	has	a	home	page,	compare	it	to	the	competition’s	home	pages.	Ask
yourself	these	questions	about	the	pages:

	Does	any	of	the	page	content	appear	to	be	dynamic?

	What	pages	or	areas	on	pages	might	be	data	from	a	back-end	database?

	Do	there	appear	to	be	security	mechanisms	on	the	web	page?	Can	a	login	be
entered	to	access	data	that	might	be	stored	in	a	database?

	Most	modern	browsers	enable	you	to	view	the	source	code	of	the	page	returned.
Use	your	web	browser	to	view	the	source	code.	Is	there	any	code	that	would	give
you	a	hint	as	to	what	the	back-end	database	is?

	If	you	uncovered	any	information	in	the	page’s	code,	such	as	a	server	name	or	a
database	username,	would	you	consider	this	a	security	flaw?

2.	Visit	the	following	websites	and	browse	through	the	content,	latest	technologies,
and	companies’	use	of	data	on	the	Web	(data	that	appears	to	be	derived	from	a
database):

	www.amazon.com

	www.informit.com

	www.mysql.com

	www.oracle.com

	www.ebay.com

	www.google.com

http://www.amazon.com
http://www.informit.com
http://www.mysql.com
http://www.oracle.com
http://www.ebay.com
http://www.google.com

Hour	24.	Extensions	to	Standard	SQL

What	You’ll	Learn	in	This	Hour:

	Various	implementations

	Differences	between	implementations

	Compliance	with	ANSI	SQL

	Interactive	SQL	statements

	Using	variables

	Using	parameters

This	hour	covers	extensions	to	American	National	Standards	Institute	(ANSI)-standard
SQL.	Although	most	implementations	conform	to	the	standard,	many	vendors	have
provided	extensions	to	standard	SQL	through	various	enhancements.

Various	Implementations
Numerous	SQL	implementations	are	released	by	various	vendors.	All	the	relational
database	vendors	could	not	possibly	be	mentioned;	a	few	of	the	leading	implementations,
however,	are	discussed.	The	implementations	discussed	here	are	MySQL,	Microsoft	SQL
Server,	and	Oracle.	Other	popular	vendors	providing	database	products	include	Sybase,
IBM,	Informix,	Progress,	PostgreSQL,	and	many	more.

Differences	Between	Implementations
Although	the	implementations	discussed	in	this	hour	are	relational	database	products,
there	are	specific	differences	between	each.	These	differences	stem	from	the	design	of	the
product	and	the	way	data	is	handled	by	the	database	engine;	however,	this	book
concentrates	on	the	SQL	aspect	of	the	differences.	All	implementations	use	SQL	as	the
language	for	communicating	with	the	database,	as	directed	by	ANSI.	Many	have	some
sort	of	extension	to	SQL	that	is	unique	to	that	particular	implementation.

Tip:	Vendors	Purposely	Break	with	the	ANSI	Standard

Differences	in	SQL	have	been	adopted	by	various	vendors	to	enhance	ANSI	SQL
for	performance	considerations	and	ease	of	use.	Vendors	also	strive	to	make
enhancements	that	provide	them	with	advantages	over	other	vendors,	making	their
implementation	more	attractive	to	the	customer.

Now	that	you	know	SQL,	you	should	have	little	problem	adjusting	to	the	differences	in
SQL	among	the	various	vendors.	In	other	words,	if	you	can	write	SQL	in	a	Sybase
implementation,	you	should	be	able	to	write	SQL	in	Oracle.	Besides,	knowing	SQL	for
various	vendors	improves	your	résumé.

The	following	sections	compare	the	SELECT	statement’s	syntax	from	a	few	major

vendors	to	the	ANSI	standard.

Following	is	the	ANSI	standard:
Click	here	to	view	code	image

SELECT	[DISTINCT]	[*	|	COLUMN1	[,	COLUMN2]
FROM	TABLE1	[,	TABLE2]
[WHERE	SEARCH_	CONDITION]
GROUP	BY	[TABLE_ALIAS	|	COLUMN1	[,	COLUMN2]
[HAVING	SEARCH_CONDITION]]
[ALL]
[CORRESPONDING	[BY	(COLUMN1	[,	COLUMN2])]
QUERY_SPEC	|	SELECT	*	FROM	TABLE	|	TABLE_CONSTRUCTOR]
[ORDER	BY	SORT_LIST]

Following	is	the	syntax	for	Microsoft	SQL	Server:
Click	here	to	view	code	image

[WITH	<COMMON_TABLE_EXPRESSION>]
SELECT	[DISTINCT][*|	COLUMN1	[,	COLUMN2,	..]
[INTO	NEW_TABLE]
FROM	TABLE1	[,	TABLE2]
[WHERE	SEARCH_CONDITION]
GROUP	BY	[COLUMN1,	COLUMN2,…]
[HAVING	SEARCH_CONDITION]
[{UNION	|	INTERSECT	|	EXCEPT}][ALL]
[ORDER	BY	SORT_LIST]
[OPTION	QUERY_HINT]

Following	is	the	syntax	for	Oracle:
Click	here	to	view	code	image

SELECT	[ALL	|	DISTINCT]	COLUMN1	[,	COLUMN2]
FROM	TABLE1	[,	TABLE2]
[WHERE	SEARCH_CONDITION]
[[START	WITH	SEARCH_CONDITION]
CONNECT	BY	SEARCH_CONDITION]
[GROUP	BY	COLUMN1	[,	COLUMN2]
[HAVING	SEARCH_CONDITION]]
[{UNION	[ALL]	|	INTERSECT	|	MINUS}	QUERY_SPEC]
[ORDER	BY	COLUMN1	[,	COLUMN2]]
[NOWAIT]

As	you	can	see	by	comparing	the	syntax	examples,	the	basics	are	there.	All	have	the
SELECT,	FROM,	WHERE,	GROUP	BY,	HAVING,	UNION,	and	ORDER	BY	clauses.	Each
of	these	clauses	works	the	same	conceptually,	but	some	have	additional	options	that	might
not	be	found	in	other	implementations.	These	options	are	called	enhancements.

Compliance	with	ANSI	SQL
Vendors	do	strive	to	comply	with	ANSI	SQL;	however,	none	is	100%	ANSI	SQL-
standard.	Some	vendors	have	added	commands	or	functions	to	ANSI	SQL,	and	ANSI
SQL	has	adopted	many	of	these	new	commands	or	functions.	It	is	beneficial	for	a	vendor
to	comply	with	the	standard	for	many	reasons.	One	obvious	benefit	to	standard
compliance	is	that	the	vendor’s	implementation	will	be	easy	to	learn,	and	the	SQL	code
used	is	portable	to	other	implementations.	Portability	is	definitely	a	factor	when	a	database
is	migrated	from	one	implementation	to	another.

For	a	database	to	be	considered	ANSI-compliant,	however,	it	needs	to	correspond	only	to
a	small	subset	of	the	functionality	of	the	ANSI	standard.	The	ANSI	standard	is	written	by
a	coalition	of	database	companies.	Therefore,	most	implementations	are	considered	ANSI-
compliant	even	though	their	SQL	implementations	might	vary	widely	between	one
another.	Limiting	your	code	to	only	strict	ANSI-compliant	statements	would	improve
portability	but	would	most	likely	severely	limit	database	performance.	So,	in	the	end,	you
need	to	balance	the	demands	of	portability	with	the	performance	needs	of	your	users.	It	is
often	best	to	forgo	a	lot	of	portability	to	ensure	that	your	applications	are	taking	advantage
of	the	specific	platform	you	are	using	to	its	full	extent.

Extensions	to	SQL
Practically	all	the	major	vendors	have	an	extension	to	SQL.	A	SQL	extension	is	unique	to
a	particular	implementation	and	is	generally	not	portable	between	implementations.
However,	popular	standard	extensions	are	reviewed	by	ANSI	and	are	sometimes
implemented	as	part	of	the	new	standard.

PL/SQL,	which	is	a	product	of	Oracle	Corporation,	and	Transact-SQL,	which	is	used	by
both	Sybase	and	Microsoft	SQL	Server,	are	two	examples	of	robust	SQL	extensions.	Both
extensions	are	discussed	in	relative	detail	for	the	examples	during	this	hour.

Example	Extensions
Both	PL/SQL	and	Transact-SQL	are	considered	fourth-generation	programming
languages.	Both	are	procedural	languages,	whereas	SQL	is	a	nonprocedural	language.	We
also	briefly	discuss	MySQL.

The	nonprocedural	language	SQL	includes	the	following	statements:

	INSERT

	UPDATE

	DELETE

	SELECT

	COMMIT

	ROLLBACK

A	SQL	extension	considered	a	procedural	language	includes	all	the	preceding	statements,
commands,	and	functions	of	standard	SQL.	In	addition,	extensions	include	statements
such	as

	Variable	declarations

	Cursor	declarations

	Conditional	statements

	Loops

	Error	handling

	Variable	assignment

	Date	conversions

	Wildcard	operators

	Triggers

	Stored	procedures

These	statements	allow	the	programmer	to	have	more	control	over	the	way	data	is	handled
in	a	procedural	language.

Transact-SQL
Transact-SQL	is	a	procedural	language	used	by	Microsoft	SQL	Server,	which	means	you
tell	the	database	how	and	where	to	find	and	manipulate	data.	SQL	is	nonprocedural,	and
the	database	decides	how	and	where	to	select	and	manipulate	data.	Some	highlights	of
Transact-SQL’s	capabilities	include	declaring	local	and	global	variables,	cursors,	error
handling,	triggers,	stored	procedures,	loops,	wildcard	operators,	date	conversions,	and
summarized	reports.

An	example	Transact-SQL	statement	follows:
Click	here	to	view	code	image

IF	(SELECT	AVG(PAYRATE)	FROM	EMPLOYEES)	>	20
BEGIN
		PRINT	‘LOWER	ALL	PAY	BY	10	PERCENT.’
END
ELSE
		PRINT	‘PAY	IS	REASONABLE.’

This	is	a	simple	Transact-SQL	statement.	It	states	that	if	the	average	hourly	pay	rate	in
EMPLOYEES	is	greater	than	20,	the	text	LOWER	ALL	PAY	BY	10	PERCENT.	will	be
printed.	If	the	average	cost	is	less	than	or	equal	to	20,	the	text	PAY	IS	REASONABLE.
will	be	printed.

Notice	the	use	of	the	IF…ELSE	statement	to	evaluate	conditions	of	data	values.	The
PRINT	command	is	also	a	new	command.	These	additional	options	are	a	very	small
sampling	of	Transact-SQL	capabilities.

Tip:	SQL	Is	Not	Considered	a	Procedural	Language

Standard	SQL	is	primarily	a	nonprocedural	language,	which	means	that	you	issue
statements	to	the	database	server.	The	database	server	decides	how	to	optimally
execute	the	statement.	Procedural	languages	allow	the	programmer	to	request	the
data	to	be	retrieved	or	manipulated	and	to	tell	the	database	server	exactly	how	to
carry	out	the	request.

PL/SQL
PL/SQL	is	Oracle’s	extension	to	SQL.	Like	Transact-SQL,	PL/SQL	is	a	procedural
language.	PL/SQL	is	structured	in	logical	blocks	of	code.	A	PL/SQL	block	contains	three
sections,	two	of	which	are	optional.	The	first	section	is	the	DECLARE	section,	which	is
optional.	The	DECLARE	section	contains	variables,	cursors,	and	constants.	The	second
section	is	called	the	PROCEDURE	section	and	is	mandatory.	The	PROCEDURE	section
contains	the	conditional	commands	and	SQL	statements.	This	section	is	where	the	block	is
controlled.	The	third	section	is	called	the	EXCEPTION	section,	and	it	is	optional.	The
EXCEPTION	section	defines	the	way	the	program	should	handle	errors	and	user-defined
exceptions.	Highlights	of	PL/SQL	include	the	use	of	variables,	constants,	cursors,
attributes,	loops,	handling	exceptions,	displaying	output	to	the	programmer,	transactional
control,	stored	procedures,	triggers,	and	packages.

An	example	PL/SQL	statement	follows:
Click	here	to	view	code	image

DECLARE
		CURSOR	EMP_CURSOR	IS	SELECT	EMPLOYEEID,	LASTNAME,	FIRSTNAME
																							FROM	EMPLOYEES;
		EMP_REC	EMP_CURSOR%ROWTYPE;
BEGIN
		OPEN	EMP_CURSOR;
		LOOP
				FETCH	EMP_CURSOR	INTO	EMP_REC;
				EXIT	WHEN	EMP_CURSOR%NOTFOUND;
				IF	(EMP_REC.MIDDLENAME	IS	NULL)	THEN
						UPDATE	EMPLOYEES
						SET	MIDDLENAME	=	‘X’
						WHERE	EMPLOYEEID	=	EMP_REC.EMPLOYEEID;
						COMMIT;
				END	IF;
		END	LOOP;
		CLOSE	EMP_CURSOR;
END;

Two	out	of	the	three	sections	are	used	in	this	example:	the	DECLARE	section	and	the
PROCEDURE	section.	First,	a	cursor	called	EMP_CURSOR	is	defined	by	a	query.	Second,	a
variable	called	EMP_REC	is	declared,	whose	values	have	the	same	data	type
(%ROWTYPE)	as	each	column	in	the	defined	cursor.	The	first	step	in	the	PROCEDURE
section	(after	BEGIN)	is	to	open	the	cursor.	After	the	cursor	is	opened,	you	use	the	LOOP
command	to	scroll	through	each	record	of	the	cursor,	which	is	eventually	terminated	by
END	LOOP.	Update	EMPLOYEES	for	all	rows	in	the	cursor.	If	the	middle	initial	of	an
employee	is	NULL,	the	update	sets	the	middle	initial	to	'X'.	Changes	are	committed,	and
the	cursor	is	eventually	closed.

MySQL
MySQL	is	a	multiuser,	multithreaded	SQL	database	client/server	implementation.	It
consists	of	a	server	daemon,	a	terminal	monitor	client	program,	and	several	client
programs	and	libraries.	The	main	goals	of	MySQL	are	speed,	robustness,	and	ease	of	use.
MySQL	was	originally	designed	to	provide	faster	access	to	large	databases.

MySQL	is	often	considered	one	of	the	more	ANSI-compliant	database	implementations.
From	its	beginnings,	MySQL	has	been	part	of	a	semi-open-source	development
environment	that	has	deliberately	tried	to	maintain	close	adherence	to	the	ANSI	standards.
Since	version	5.0,	MySQL	has	been	available	in	both	the	open-source	Community	Edition
as	well	as	the	closed-source	Enterprise	Edition.	In	2009,	MySQL	was	acquired	as	part	of	a
deal	in	which	Oracle	bought	Sun	Microsystems,	which	was	the	original	owner	of	the
platform.

Currently,	MySQL	does	not	contain	major	extensions	like	Oracle	or	Microsoft	SQL
Server,	but	with	its	recent	acquisition,	this	might	change	in	the	near	future.	To	be	certain,
check	your	version’s	documentation	for	specific	extensions	that	may	become	available.

Interactive	SQL	Statements
Interactive	SQL	statements	ask	you	for	a	variable,	parameter,	or	some	form	of	data	before
fully	executing.	Say	you	have	a	SQL	statement	that	is	interactive.	The	statement	is	used	to
create	users	in	a	database.	The	SQL	statement	could	prompt	you	for	information	such	as
user	ID,	name	of	user,	and	phone	number.	The	statement	could	be	for	one	or	many	users
and	is	executed	only	once.	Otherwise,	each	user	has	to	be	entered	individually	with	the
CREATE	USER	statement.	The	SQL	statement	could	also	prompt	you	for	privileges.	Not
all	vendors	have	interactive	SQL	statements;	you	must	check	your	particular
implementation.

Another	interesting	aspect	of	using	interactive	SQL	statements	is	the	ability	to	employ
parameters.	Parameters	are	variables	that	are	written	in	SQL	and	reside	within	an
application.	Parameters	can	be	passed	into	a	SQL	statement	during	runtime,	allowing	more
flexibility	for	the	user	executing	the	statement.	Many	of	the	major	implementations	allow
use	of	these	parameters.	Following	are	examples	of	passing	parameters	for	Oracle	and
SQL	Server.

Parameters	in	Oracle	can	be	passed	into	an	otherwise	static	SQL	statement,	as	the
following	code	shows:
Click	here	to	view	code	image

SELECT	EMPLOYEEID,	LASTNAME,	FIRSTNAME
FROM	EMPLOYEES
WHERE	EMPLOYEEID	=	‘&EMP_ID’

The	preceding	SQL	statement	returns	the	EMPLOYEEID,	LASTNAME,	and	FIRSTNAME
for	whatever	EMP_ID	you	enter	at	the	prompt.

The	next	statement	prompts	you	for	the	city	and	the	state.	The	query	returns	all	data	for
those	employees	living	in	the	city	and	state	that	you	entered.

SELECT	*
FROM	EMPLOYEES
WHERE	CITY	=	‘&CITY’
AND	STATE	=	‘&STATE’

Parameters	in	Microsoft	SQL	Server	can	also	be	passed	into	a	stored	procedure:
CREATE	PROC	EMP_SEARCH
(@EMP_ID)
AS

SELECT	LASTNAME,	FIRSTNAME
FROM	EMPLOYEES
WHERE	EMPLOYEEID	=	@EMP_ID

Type	the	following	to	execute	the	stored	procedure	and	pass	a	parameter:
SP_EMP_SEARCH	‘5593’

Summary
This	hour	discussed	extensions	to	standard	SQL	among	vendors’	implementations	and
their	compliance	with	the	ANSI	standard.	After	you	learn	SQL,	you	can	easily	apply	your
knowledge—and	your	code—to	other	implementations	of	SQL.	SQL	is	portable	between
vendors;	implementations	can	use	most	SQL	code	with	a	few	minor	modifications.

The	last	part	of	this	hour	was	spent	showing	two	specific	extensions	used	by	three
implementations.	Microsoft	SQL	Server	and	Sybase	use	Transact-SQL,	and	Oracle	uses
PL/SQL.	You	should	have	seen	some	similarities	between	Transact-SQL	and	PL/SQL.
One	thing	to	note	is	that	these	two	implementations	have	first	sought	their	compliance
with	the	standard	and	then	added	enhancements	to	their	implementations	for	better	overall
functionality	and	efficiency.	Also	discussed	was	MySQL,	which	was	designed	to	increase
performance	for	large	database	queries.	This	hour’s	intent	was	to	make	you	aware	that
many	SQL	extensions	do	exist	and	to	teach	the	importance	of	a	vendor’s	compliance	to	the
ANSI	SQL	standard.

If	you	take	what	you	have	learned	in	this	book	and	apply	it	(build	your	code,	test	it,	and
build	upon	your	knowledge),	you	are	well	on	your	way	to	mastering	SQL.	Companies
have	data	and	cannot	function	without	databases.	Relational	databases	are	everywhere,
and	because	SQL	is	the	standard	language	with	which	to	communicate	and	administer	a
relational	database,	you	have	made	an	excellent	decision	by	learning	SQL.	Good	luck!

Q&A
Q.	Why	do	variations	in	SQL	exist?

A.	Variations	in	SQL	exist	among	the	various	implementations	because	of	the	way	data
is	stored,	because	of	the	various	vendors’	ambition	for	trying	to	get	an	advantage	over
competition,	and	because	of	new	ideas	that	surface.

Q.	After	learning	basic	SQL,	can	I	use	SQL	in	different	implementations?

A.	Yes.	However,	remember	that	there	are	differences	and	variations	between	the
implementations.	The	basic	framework	for	SQL	is	the	same	among	most
implementations.

Workshop
The	following	workshop	is	composed	of	a	series	of	quiz	questions	and	practical	exercises.
The	quiz	questions	are	designed	to	test	your	overall	understanding	of	the	current	material.
The	practical	exercises	are	intended	to	afford	you	the	opportunity	to	apply	the	concepts
discussed	during	the	current	hour,	as	well	as	build	upon	the	knowledge	acquired	in
previous	hours	of	study.	Please	take	time	to	complete	the	quiz	questions	and	exercises
before	continuing.	Refer	to	Appendix	C,	“Answers	to	Quizzes	and	Exercises,”	for
answers.

Quiz
1.	Is	SQL	a	procedural	or	nonprocedural	language?

2.	What	are	the	three	basic	operations	of	a	cursor	outside	of	declaring	the	cursor?

3.	Procedural	or	nonprocedural:	With	which	does	the	database	engine	decide	how	to
evaluate	and	execute	SQL	statements?

Exercises
1.	Research	the	SQL	variations	among	the	various	vendors.	Go	to	the	following
websites	and	review	the	implementations	of	SQL	that	are	available:

	www.oracle.com

	www.sybase.com

	www.microsoft.com

	www.mysql.com

	www.informix.com

	www.pgsql.com

	www.ibm.com

http://www.oracle.com
http://www.sybase.com
http://www.microsoft.com
http://www.mysql.com
http://www.informix.com
http://www.pgsql.com
http://www.ibm.com

Part	IX:	Appendixes

Appendix	A.	Common	SQL	Commands

This	appendix	details	some	of	the	most	common	SQL	commands	that	you	will	use.	As	we
have	stated	throughout	the	book,	check	your	database	documentation	because	some	of	the
statements	vary	depending	upon	your	implementation.

SQL	Statements

ALTER	TABLE
Click	here	to	view	code	image

ALTER	TABLE	TABLE_NAME
[MODIFY	|	ADD	|	DROP]
		[COLUMN	COLUMN_NAME][DATATYPE|NULL	NOT	NULL]	[RESTRICT|CASCADE]
[ADD	|	DROP]		CONSTRAINT	CONSTRAINT_NAME]

Description:	Alters	a	table’s	columns

COMMIT
COMMIT	[TRANSACTION]

Description:	Saves	a	transaction	to	the	database

CREATE	INDEX
Click	here	to	view	code	image

CREATE	INDEX	INDEX_NAME
ON	TABLE_NAME	(COLUMN_NAME)

Description:	Creates	an	index	on	a	table

CREATE	ROLE
Click	here	to	view	code	image

CREATE	ROLE	ROLE	NAME
[WITH	ADMIN	[CURRENT_USER	|	CURRENT_ROLE]]

Description:	Creates	a	database	role	to	which	system	and	object	privileges	can	be	granted

CREATE	TABLE
Click	here	to	view	code	image

CREATE	TABLE	TABLE_NAME
(COLUMN1				DATA_TYPE				[NULL|NOT	NULL],
		COLUMN2				DATA_TYPE				[NULL|NOT	NULL])

Description:	Creates	a	database	table

CREATE	TABLE	AS
Click	here	to	view	code	image

CREATE	TABLE	TABLE_NAME	AS
SELECT	COLUMN1,	COLUMN2,…

FROM	TABLE_NAME
[WHERE	CONDITIONS]
[GROUP	BY	COLUMN1,	COLUMN2,…]
[HAVING	CONDITIONS]

Description:	Creates	a	database	table	based	on	another	table

CREATE	TYPE
Click	here	to	view	code	image

CREATE	TYPE	typename	AS	OBJECT
(COLUMN1				DATA_TYPE				[NULL|NOT	NULL],
		COLUMN2				DATA_TYPE				[NULL|NOT	NULL])

Description:	Creates	a	user-defined	type	that	can	define	columns	in	a	table

CREATE	USER
Click	here	to	view	code	image

CREATE	USER	username	IDENTIFIED	BY	password

Description:	Creates	a	user	account	in	the	database

CREATE	VIEW
Click	here	to	view	code	image

CREATE	VIEW	AS
SELECT	COLUMN1,	COLUMN2,…
FROM	TABLE_NAME
[WHERE	CONDITIONS]
[GROUP	BY	COLUMN1,	COLUMN2,…]
[HAVING	CONDITIONS]

Description:	Creates	a	view	of	a	table

DELETE
DELETE
FROM	TABLE_NAME
[WHERE	CONDITIONS]

Description:	Deletes	rows	of	data	from	a	table

DROP	INDEX
DROP	INDEX	INDEX_NAME

Description:	Drops	an	index	on	a	table

DROP	TABLE
DROP	TABLE	TABLE_NAME

Description:	Drops	a	table	from	the	database

DROP	USER
Click	here	to	view	code	image

DROP	USER	user1	[,	user2,	…]

Description:	Drops	a	user	account	from	the	database

DROP	VIEW
DROP	VIEW	VIEW_NAME

Description:	Drops	a	view	of	a	table

GRANT
Click	here	to	view	code	image

GRANT	PRIVILEGE1,	PRIVILEGE2,	…	TO	USER_NAME

Description:	Grants	privileges	to	a	user

INSERT
Click	here	to	view	code	image

INSERT	INTO	TABLE_NAME	[(COLUMN1,	COLUMN2,…]
VALUES	(‘VALUE1’,‘VALUE2’,…)

Description:	Inserts	new	rows	of	data	into	a	table

INSERT…SELECT
INSERT	INTO	TABLE_NAME
SELECT	COLUMN1,	COLUMN2
FROM	TABLE_NAME
[WHERE	CONDITIONS]

Description:	Inserts	new	rows	of	data	into	a	table	based	on	data	in	another	table

REVOKE
Click	here	to	view	code	image

REVOKE	PRIVILEGE1,	PRIVILEGE2,	…	FROM	USER_NAME

Description:	Revokes	privileges	from	a	user

ROLLBACK
Click	here	to	view	code	image

ROLLBACK	[TO	SAVEPOINT_NAME]

Description:	Undoes	a	database	transaction

SAVEPOINT
SAVEPOINT	SAVEPOINT_NAME

Description:	Creates	transaction	savepoints	in	which	to	roll	back	if	necessary

SELECT
Click	here	to	view	code	image

SELECT	[DISTINCT]	COLUMN1,	COLUMN2,…
FROM	TABLE1,	TABLE2,…
[WHERE	CONDITIONS]
[GROUP	BY	COLUMN1,	COLUMN2,…]
[HAVING	CONDITIONS]
[ORDER	BY	COLUMN1,	COLUMN2,…]

Description:	Returns	data	from	one	or	more	database	tables;	used	to	create	queries

UPDATE
Click	here	to	view	code	image

UPDATE	TABLE_NAME
SET	COLUMN1	=	‘VALUE1’,
				COLUMN2	=	‘VALUE2’,…
[WHERE	CONDITIONS]

Description:	Updates	existing	data	in	a	table

SQL	Clauses

SELECT
Click	here	to	view	code	image

SELECT	*
SELECT	COLUMN1,	COLUMN2,…
SELECT	DISTINCT	(COLUMN1)
SELECT	COUNT(*)

Description:	Defines	columns	to	display	as	part	of	query	output

FROM
Click	here	to	view	code	image

FROM	TABLE1,	TABLE2,	TABLE3,…

Description:	Defines	tables	from	which	to	retrieve	data

WHERE
Click	here	to	view	code	image

WHERE	COLUMN1	=	‘VALUE1’
		AND	COLUMN2	=	‘VALUE2’
…
WHERE	COLUMN1	=	‘VALUE1’
			OR	COLUMN2	=	‘VALUE2’
…
WHERE	COLUMN	IN	(‘VALUE1’	[,	‘VALUE2’])

Description:	Defines	conditions	(criteria)	placed	on	a	query	for	data	to	be	returned

GROUP	BY
Click	here	to	view	code	image

GROUP	BY	GROUP_COLUMN1,	GROUP_COLUMN2,…

Description:	Divides	output	into	logical	groups;	a	form	of	sorting	operation

HAVING
Click	here	to	view	code	image

HAVING	GROUP_COLUMN1	=	‘VALUE1’
			AND	GROUP_COLUMN2	=	‘VALUE2’
…

Description:	Places	conditions	on	the	GROUP	BY	clause;	similar	to	the	WHERE	clause

ORDER	BY
Click	here	to	view	code	image

ORDER	BY	COLUMN1,	COLUMN2,…
ORDER	BY	1,2,…

Description:	Sorts	a	query’s	results

Appendix	B.	Installing	Oracle	and	Microsoft	SQL

The	instructions	for	installing	Microsoft	SQL	Server	and	Oracle	for	the	Windows
operating	system	have	been	included	in	this	appendix	for	your	convenience.	Oracle	is
available	on	other	operating	systems	as	well,	such	as	Mac	OS	and	Linux.	These
instructions	are	accurate	as	of	the	date	this	book	was	written.	Neither	the	authors	nor	Sams
Publishing	place	any	warranties	on	the	software	or	the	software	support.	For	any
installation	problems	or	to	inquire	about	software	support,	refer	to	the	particular
implementation’s	documentation	or	contact	customer	support	for	the	implementation.

Windows	Installation	Instructions	for	Oracle
Use	the	following	instructions	to	install	Oracle	on	a	computer	with	Microsoft	Windows:

1.	Go	to	www.oracle.com	and	download	the	appropriate	installation	package	for	your
machine	from	the	Downloads	tab.	Use	the	Oracle	10g	Express	Edition	for	the
examples	in	this	book	because	this	is	the	free	version	of	the	application.

2.	Double-click	the	installation	file	to	start	the	installation,	and	on	the	first	screen,
click	Next.

3.	Click	to	agree	to	the	license	agreement,	and	click	Next.

4.	Select	the	default	installation	and	install	location	on	the	screen,	as	shown	in	Figure
B.1,	and	click	Next.

FIGURE	B.1	Oracle	installation	location

5.	Enter	and	confirm	a	password	for	the	SYSTEM	(administrator)	account,	as	shown	in
Figure	B.2,	and	select	Next.

http://www.oracle.com

FIGURE	B.2	Setting	the	system	password

6.	Click	Install	on	the	next	screen.	The	installation	process	begins.

If	your	installation	is	successful,	you	should	see	the	completion	screen	shown	in	Figure
B.3.

FIGURE	B.3	Oracle	installation	completion	screen

If	all	the	preceding	steps	were	successful,	you	are	ready	to	use	Oracle	for	exercises	in	this
book.

If	you	experience	problems	during	the	installation,	uninstall	Oracle	and	repeat	steps	1–6.
If	you	are	still	unable	to	obtain	or	install	Oracle,	contact	Oracle	for	support,	and	check	the

community	support	forums	located	on	www.oracle.com.

By	the	Way:	Oracle	Install	Instructions

You	might	also	want	to	review	the	current	documentation	for	Oracle	for	installation
instructions.	To	access	the	online	documentation,	go	to	www.oracle.com	and	look
under	Products	and	Services	for	the	link	to	the	documentation.

Windows	Installation	Instructions	for	Microsoft	SQL	Server
Use	the	following	instructions	to	install	Microsoft	SQL	Server	on	a	computer	with
Microsoft	Windows:

1.	Go	to	www.microsoft.com/en-us/server-cloud/products/sql-server-editions/sql-
server-express.aspx,	click	the	Download	button,	and	choose	the	appropriate
installation	package	to	download	for	your	machine.

2.	Double-click	the	installation	file.	You	should	see	the	initial	screen,	as	shown	in
Figure	B.4.

FIGURE	B.4	SQL	Server	initial	installation	screen

3.	Select	the	new	installation	option	from	the	choices	in	the	right	pane,	as	shown	in
Figure	B.5.	This	begins	the	installation	of	some	setup	and	support	files	that	are	used
during	the	main	installation.

http://www.oracle.com
http://www.oracle.com
http://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/sql-server-express.aspx

FIGURE	B.5	SQL	Server	installation	selection	screen

4.	Leave	the	radio	button	selected	for	a	new	installation	and	click	Next.

5.	Accept	the	license	terms	and	click	Next.

6.	Select	all	the	features	and	click	Next.

7.	Select	Default	instance	and	click	Next.

8.	Click	Next	on	the	disk	space	requirements	screen.

9.	On	the	Database	Engine	Configuration	screen,	click	the	Add	Current	User	button	to
add	yourself	as	an	administrator	of	the	instance,	and	then	click	Next.

10.	Click	Next	on	the	Error	Reporting	screen.

11.	Click	Next	on	the	Installation	Configuration	Rules	page	to	begin	the	installation.

If	all	the	preceding	steps	were	successful,	you	should	see	a	completion	screen.	You	will	be
ready	to	use	Microsoft	SQL	Server	for	exercises	in	this	book.

If	you	experience	problems	during	the	installation,	uninstall	SQL	Server	and	repeat	steps
1–11.	If	you	are	still	unable	to	obtain	or	install	Microsoft	SQL	Server,	refer	to	the
Microsoft	website	at	www.microsoft.com.

http://www.microsoft.com

Note:	Microsoft	SQL	Server	Install	Instructions

You	might	also	want	to	review	the	current	documentation	for	Microsoft	SQL	Server
for	installation	instructions.	To	get	to	the	online	documentation,	go	to
www.microsoft.com/en-us/server-cloud/products/sql-server-editions/sql-server-
express.aspx,	and	look	under	the	Product	Information	tab	for	the	link	to	the
documentation.

http://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/sql-server-express.aspx

Appendix	C.	Answers	to	Quizzes	and	Exercises

Hour	1,	“Welcome	to	the	World	of	SQL”

Quiz	Answers
1.	What	does	the	acronym	SQL	stand	for?

A.	SQL	stands	for	Structured	Query	Language.

2.	What	are	the	six	main	categories	of	SQL	commands?

A.	Data	Definition	Language	(DDL)

Data	Manipulation	Language	(DML)

Data	Query	Language	(DQL)

Data	Control	Language	(DCL)

Data	administration	commands	(DAC)

Transactional	control	commands	(TCC)

3.	What	are	the	four	transactional	control	commands?

A.
COMMIT
ROLLBACK
SAVEPOINT
SET	TRANSACTIONS

4.	What	is	the	main	difference	between	client/server	and	web	technologies	as	they
relate	to	database	access?

A.	The	connection	to	the	database	is	the	main	difference.	Using	the	client	to	connect
means	you	log	on	to	the	server	directly	to	access	the	database.	When	using	the
Web,	you	log	on	to	the	Internet	to	reach	the	database.

5.	If	a	field	is	defined	as	NULL,	does	something	have	to	be	entered	into	that	field?

A.	No.	If	a	column	is	defined	as	NULL,	nothing	has	to	be	in	the	column.	If	a	column
is	defined	as	NOT	NULL,	something	does	have	to	be	entered.

Exercise	Answers
1.	Identify	the	categories	in	which	the	following	SQL	commands	fall:

CREATE	TABLE
DELETE
SELECT
INSERT
ALTER	TABLE
UPDATE

A.	CREATE	TABLE—DDL,	Data	Definition	Language

DELETE—DML,	Data	Manipulation	Language

SELECT—DQL,	Data	Query	Language

INSERT—DML,	Data	Manipulation	Language

ALTER	TABLE—DDL,	Data	Definition	Language

UPDATE—DML,	Data	Manipulation	Language

2.	Study	the	following	tables,	and	pick	out	the	column	that	would	be	a	good	candidate
for	the	primary	key.

A.	The	primary	key	for	EMPLOYEE_TBL	is	the	employee	number.	Each	employee
is	assigned	a	unique	employee	number.	Employees	could	have	the	same	name,
phone,	start	date,	and	address.

The	primary	key	for	INVENTORY_TBL	is	the	item	number.	The	other	columns
could	be	duplicated.

The	primary	key	for	EQUIPMENT_TBL	is	the	equipment	number.	Again,	the
other	columns	could	be	duplicated.

3.	No	answer	required.

Hour	2,	“Defining	Data	Structures”

Quiz	Answers
1.	True	or	false:	An	individual’s	Social	Security	number,	entered	in	the	format
'111111111',	can	be	any	of	the	following	data	types:	constant	length	character,
varying	length	character,	or	numeric.

A.	True,	as	long	as	the	precision	is	the	correct	length.

2.	True	or	false:	The	scale	of	a	numeric	value	is	the	total	length	allowed	for	values.

A.	False.	The	precision	is	the	total	length,	where	the	scale	represents	the	number	of
places	reserved	to	the	right	of	a	decimal	point.

3.	Do	all	implementations	use	the	same	data	types?

A.	No.	Most	implementations	differ	in	their	use	of	data	types.	The	data	types
prescribed	by	ANSI	are	adhered	to	but	might	differ	among	implementations
according	to	storage	precautions	taken	by	each	vendor.

4.	What	are	the	precision	and	scale	of	the	following?
DECIMAL(4,2)
DECIMAL(10,2)
DECIMAL(14,1)

A.
Click	here	to	view	code	image

DECIMAL(4,2)—Precision	=	4,	scale	=	2
DECIMAL(10,2)—Precision	=	10,	scale	=	2
DECIMAL(14,1)—Precision	=	14,	scale	=	1

5.	Which	numbers	could	be	inserted	into	a	column	whose	data	type	is
DECIMAL(4,1)?

a.	16.2

b.	116.2

c.	16.21

d.	1116.2

e.	1116.21

A.	The	first	three	fit;	although,	16.21	is	rounded	off	to	16.2.	The	numbers
1116.2	and	1116.21	exceed	the	maximum	precision,	which	was	set	at	4.

6.	What	is	data?

A.	Data	is	a	collection	of	information	stored	in	a	database	as	one	of	several	different
data	types.

Exercise	Answers
1.	Take	the	following	column	titles,	assign	them	to	a	data	type,	decide	on	the	proper
length,	and	give	an	example	of	the	data	you	would	enter	into	that	column:

A.	ssn—Constant-length	character;	'111111111'

state—Varying-length	character;	'INDIANA'

city—Varying-length	character;	'INDIANAPOLIS'

phone_number—Constant-length	character;	'(555)555-5555'

zip—Constant-length	character;	'46113'

last_name—Varying-length	character;	'JONES'

first_name—Varying-length	character;	'JACQUELINE'

middle_name—Varying-length	character;	'OLIVIA'

salary—Numeric	data	type;	30000

hourly_pay_rate—Decimal;	35.00

date_hired—Date;	'01/01/2007'

2.	Take	the	same	column	titles	and	decide	if	they	should	be	NULL	or	NOT	NULL,
realizing	that	in	some	cases	in	which	a	column	would	normally	be	NOT	NULL,	the
column	could	be	NULL	or	vice	versa,	depending	on	the	application:

A.	ssn—NOT	NULL

state—NOT	NULL

city—NOT	NULL

phone_number—NULL

zip—NOT	NULL

last_name—NOT	NULL

first_name—NOT	NULL

middle_name—NULL

salary—NULL

hourly_pay_rate—NULL

date_hired—NOT	NULL

Some	individuals	might	not	have	a	phone	(however	rare	that	might	be),	and	not
everyone	has	a	middle	name,	so	these	columns	should	allow	NULL	values.	In
addition,	not	all	employees	are	paid	an	hourly	rate.

3.	No	answer	required.

Hour	3,	“Managing	Database	Objects”

Quiz	Answers
1.	Does	the	following	CREATE	TABLE	statement	work?	If	not,	what	needs	to	be	done
to	correct	the	problem(s)?	Are	there	limitations	as	to	what	database	implementation
it	works	in	(MySQL,	Oracle,	or	SQL	Server)?

Click	here	to	view	code	image
CREATE	TABLE	EMPLOYEE_TABLE	AS:
(SSN										NUMBER(9)						NOT	NULL,
LAST_NAME						VARCHAR2(20)			NOT	NULL,
FIRST_NAME					VARCHAR(20)				NOT	NULL,
MIDDLE_NAME				VARCHAR2(20)			NOT	NULL,
ST	ADDRESS					VARCHAR2(20)			NOT	NULL,
CITY											CHAR(20)							NOT	NULL,
STATE										CHAR(2)								NOT	NULL,
ZIP												NUMBER(4)						NOT	NULL,
DATE	HIRED					DATE);

A.	The	CREATE	TABLE	statement	does	not	work	because	there	are	several	errors
in	the	syntax.	The	corrected	statement	follows	and	is	given	as	an	Oracle-specific
version.	A	listing	of	what	was	incorrect	follows	a	corrected	statement.

Click	here	to	view	code	image

CREATE	TABLE	EMPLOYEE_TABLE
(SSN								NUMBER()							NOT	NULL,
LAST_NAME					VARCHAR2(20)			NOT	NULL,
FIRST_NAME				VARCHAR2(20)			NOT	NULL,
MIDDLE_NAME			VARCHAR2(20),
ST_ADDRESS				VARCHAR2(30)			NOT	NULL,
CITY										VARCHAR2(20)			NOT	NULL,
STATE									CHAR(2)								NOT	NULL,
ZIP											NUMBER(5)						NOT	NULL,
DATE_HIRED				DATE);

The	following	needs	to	be	done:

1.	The	AS:	should	not	be	in	this	CREATE	TABLE	statement.

2.	A	comma	is	missing	after	the	NOT	NULL	for	the	LAST_NAME	column.

3.	The	MIDDLE_NAME	column	should	be	NULL	because	not	everyone	has	a	middle
name.

4.	The	column	ST	ADDRESS	should	be	ST_ADDRESS.	With	two	words,	the
database	looked	at	ST	as	being	the	column	name,	which	would	make	the	database
look	for	a	valid	data	type,	where	it	would	find	the	word	ADDRESS.

5.	The	CITY	column	works;	although,	it	would	be	better	to	use	the	VARCHAR2	data
type.	If	all	city	names	were	a	constant	length,	CHAR	would	be	okay.

6.	The	STATE	column	is	missing	a	left	parenthesis.

7.	The	ZIP	column	length	should	be	(5),	not	(4).

8.	The	DATE	HIRED	column	should	be	DATE_HIRED	with	an	underscore	to	make
the	column	name	one	continuous	string.

2.	Can	you	drop	a	column	from	a	table?

A.	Yes.	However,	even	though	it	is	an	ANSI	standard,	you	must	check	your
particular	implementation	to	see	if	it	has	been	accepted.

3.	What	statement	would	you	issue	to	create	a	primary	key	constraint	on	the	preceding
EMPLOYEE_TABLE?

A.
Click	here	to	view	code	image

ALTER	TABLE	EMPLOYEE_TBL
ADD	CONSTRAINT	EMPLOYEE_PK	PRIMARY	KEY(SSN);

4.	What	statement	would	you	issue	on	the	preceding	EMPLOYEE_TABLE	to	allow	the
MIDDLE_NAME	column	to	accept	NULL	values?

A.
Click	here	to	view	code	image

ALTER	TABLE	EMPOYEE_TBL
MODIFY	MIDDLE_NAME	VARCHAR(20),	NOT	NULL;

5.	What	statement	would	you	use	to	restrict	the	people	added	into	the	preceding

EMPLOYEE_TABLE	to	reside	only	in	the	state	of	New	York	('NY')?

A.
Click	here	to	view	code	image

ALTER	TABLE	EMPLOYEE_TBL
ADD	CONSTRAINT	CHK_STATE	CHECK(STATE=‘NY’);

6.	What	statement	would	you	use	to	add	an	auto-incrementing	column	called
'EMPID'	to	the	preceding	EMPLOYEE_TABLE	using	both	the	MySQL	and	SQL
Server	syntax?

A.
Click	here	to	view	code	image

ALTER	TABLE	EMPLOYEE_TBL
ADD	COLUMN	EMPID		INT	AUTO_INCREMENT;

Exercise	Answers
No	answer	required.

Hour	4,	“The	Normalization	Process”

Quiz	Answers
1.	True	or	false:	Normalization	is	the	process	of	grouping	data	into	logical	related
groups.

A.	True.

2.	True	or	false:	Having	no	duplicate	or	redundant	data	in	a	database	and	having
everything	in	the	database	normalized	is	always	the	best	way	to	go.

A.	False.	Not	always;	normalization	can	and	does	slow	performance	because	more
tables	must	be	joined,	which	results	in	more	I/O	and	CPU	time.

3.	True	or	false:	If	data	is	in	the	third	normal	form,	it	is	automatically	in	the	first	and
second	normal	forms.

A.	True.

4.	What	is	a	major	advantage	of	a	denormalized	database	versus	a	normalized
database?

A.	The	major	advantage	is	improved	performance.

5.	What	are	some	major	disadvantages	of	denormalization?

A.	Having	redundant	and	duplicate	data	takes	up	valuable	space;	it	is	harder	to	code,
and	much	more	data	maintenance	is	required.

6.	How	do	you	determine	if	data	needs	to	be	moved	to	a	separate	table	when
normalizing	your	database?

A.	If	the	table	has	redundant	groups	of	data,	this	data	would	be	a	candidate	to
remove	into	a	separate	table.

7.	What	are	the	disadvantages	of	overnormalizing	your	database	design?

A.	Overnormalization	can	lead	to	excess	CPU	and	memory	utilization,	which	can
put	excess	strain	on	the	server.

Exercise	Answers
1.	You	are	developing	a	new	database	for	a	small	company.	Take	the	following	data
and	normalize	it.	Keep	in	mind	that	there	would	be	many	more	items	for	a	small
company	than	you	are	given	here.

Employees:

Angela	Smith,	secretary,	317-545-6789,	RR	1	Box	73,	Greensburg,	Indiana,	47890,
$9.50	hour,	date	started	January	22,	1996,	SSN	is	323149669.

Jack	Lee	Nelson,	salesman,	3334	N.	Main	St.,	Brownsburg,	IN,	45687,	317-852-
9901,	salary	of	$35,000.00	year,	SSN	is	312567342,	date	started	10/28/95.

Customers:

Robert’s	Games	and	Things,	5612	Lafayette	Rd.,	Indianapolis,	IN,	46224,	317-291-
7888,	customer	ID	is	432A.

Reed’s	Dairy	Bar,	4556	W	10th	St.,	Indianapolis,	IN,	46245,	317-271-9823,
customer	ID	is	117A.

Customer	Orders:

Customer	ID	is	117A,	date	of	last	order	is	February	20,	1999,	the	product	ordered
was	napkins,	and	the	product	ID	is	661.

A.
Click	here	to	view	code	image

Employees							Customers										Orders
SSN													CUSTOMER	ID								CUSTOMER	ID
SSN													CUSTOMER	ID								CUSTOMER	ID
NAME												NAME															PRODUCT	ID
STREET	ADDRESS		STREET	ADDRESS					PRODUCT
CITY												CITY															DATE	ORDERED
STATE											STATE
ZIP		ZIP
PHONE	NUMBER				PHONE	NUMBER
SALARY
HOURLY	PAY
START	DATE
POSITION

2.	No	answer	required.

Hour	5,	“Manipulating	Data”

Quiz	Answers
1.	Use	an	imaginary	PASSENGER_TBL	with	the	following	structure:

Click	here	to	view	code	image

Column								data	type					(not)null
LAST_NAME					varchar2(20)			not	null
FIRST_NAME				varchar2(20)			not	null
SSN											char(9)								not	null
PHONE									number(10)					null

with	the	following	data	already	in	the	table:
Click	here	to	view	code	image

LAST_NAME				FIRST_NAME						SSN											PHONE
–––—		––––-			–––					–––-
SMITH								JOHN												312456788					3174549923
ROBERTS						LISA												232118857					3175452321
SMITH								SUE													443221989					3178398712
PIERCE							BILLY											310239856					3176763990

What	would	happen	if	the	following	statements	were	run?

a.
Click	here	to	view	code	image

INSERT	INTO	PASSENGER_TBL
(‘JACKSON’,	‘STEVE’,	‘313546078’,	‘3178523443’);

A.	The	INSERT	statement	does	not	run	because	the	keyword	VALUES	is	missing	in
the	syntax.

b.
Click	here	to	view	code	image

INSERT	INTO	PASSENGER_TBL	VALUES
(‘JACKSON’,	‘STEVE’,	‘313546078’,	‘3178523443’);

A.	One	row	would	be	inserted	into	the	PASSENGER_TBL.

c.
Click	here	to	view	code	image

INSERT	INTO	PASSENGER_TBL	VALUES
(‘MILLER’,	‘DANIEL’,	‘230980012’,	NULL);

A.	One	row	would	be	inserted	into	the	PASSENGER_TBL,	with	a	NULL	value	in	the
PHONE	column.

d.
Click	here	to	view	code	image

INSERT	INTO	PASSENGER_TBL	VALUES
(‘TAYLOR’,	NULL,	‘445761212’,	‘3179221331’);

A.	The	INSERT	statement	would	not	process	because	the	FIRST_NAME	column	is
NOT	NULL.

e.	DELETE	FROM	PASSENGER_TBL;

A.	All	rows	in	PASSENGER_TBL	would	be	deleted.

f.
DELETE	FROM	PASSENGER_TBL
WHERE	LAST_NAME	=	‘SMITH’;

A.	All	passengers	with	the	last	name	of	SMITH	would	be	deleted	from
PASSENGER_TBL.

g.
DELETE	FROM	PASSENGER_TBL
WHERE	LAST_NAME	=	‘SMITH’
AND	FIRST_NAME	=	‘JOHN’;

A.	Only	JOHN	SMITH	would	be	deleted	from	the	PASSENGER_TBL.

h.
UPDATE	PASSENGER_TBL
SET	LAST_NAME	–	‘CONRAD’;

A.	All	last	names	would	be	changed	to	CONRAD.

i.
UPDATE	PASSENGER_TBL
SET	LAST_NAME	=	‘CONRAD’
WHERE	LAST_NAME	=	‘SMITH’;

A.	Both	JOHN	and	SUE	SMITH	would	now	be	JOHN	and	SUE	CONRAD.

j.
UPDATE	PASSENGER_TBL
SET	LAST_NAME	=	‘CONRAD’,
FIRST_NAME	=	‘LARRY’;

A.	All	passengers	are	now	LARRY	CONRAD.

k.
UPDATE	PASSENGER_TBL
SET	LAST_NAME	=	‘CONRAD’,
FIRST_NAME	=	‘LARRY’
WHERE	SSN	=	‘312456788’;

A.	JOHN	SMITH	is	now	LARRY	CONRAD.

Exercise	Answers
1.	Use	the	AIRCRAFT	table	for	this	exercise.

Remove	the	two	aircrafts	that	were	added	earlier	in	the	chapter	with	the
AIRCRAFTCODE	of	'BBB'	and	'CCC'.

A.
Click	here	to	view	code	image

DELETE	FROM	AIRCRAFT	WHERE	AIRCRAFTCODE=‘BBB’;
DELETE	FROM	AIRCRAFT	WHERE	AIRCRAFTCODE=‘CCC’;

Add	the	following	aircraft	to	the	aircraft	table:
Click	here	to	view	code	image

AIRCRAFTCODE		AIRCRAFTTYPE													FREIGHTONLY						SEATING
A11											Lockheed	Superliner						0																600
B22											British	Aerospace	X11				0																350

C33											Boeing	Frieghtmaster					1																0

A.
Click	here	to	view	code	image

INSERT	INTO	AIRCRAFT(AIRCRAFTCODE,	AIRCRAFTTYPE,	FREIGHTONLY,	SEATING)
VALUES(‘A11’,‘Lockheed	Superliner’,0,600);

INSERT	INTO	AIRCRAFT(AIRCRAFTCODE,	AIRCRAFTTYPE,	FREIGHTONLY,	SEATING)
VALUES(‘B22’,‘British	Aerospace	X11’,0,350);

INSERT	INTO	AIRCRAFT(AIRCRAFTCODE,	AIRCRAFTTYPE,	FREIGHTONLY,	SEATING)
VALUES(‘C33’,‘Boeing	Frieghtmaster’,1,0);

Write	DML	to	correct	the	seating	associated	with	the	Lockheed	Superliner.	The
correct	seating	should	be	500.

A.
Click	here	to	view	code	image

UPDATE	AIRCRAFT	SET	SEATING=500	WHERE	AIRCRAFTCODE=‘A11’;

An	error	was	made	with	the	C33;	this	should	not	have	been	labeled	for
FREIGHTONLY	and	should	have	a	seating	capacity	of	25.	Write	the	DML	to
correct	this	entry.

A.
Click	here	to	view	code	image

UPDATE	AIRCRAFT	SET	FREIGHTONLY=0,	SEATING=25
WHERE	AIRCRAFTCODE=‘C33’;

Now	suppose	we	have	decided	to	cut	our	supported	aircraft	line.	Remove	the
three	products	you	just	added.

A.
Click	here	to	view	code	image

DELETE	FROM	AIRCRAFT	WHERE	AIRCRAFTCODE	IN	(‘A11’,‘B22’,‘C33’);

Before	you	executed	the	statements	to	remove	the	products	you	added,	what
should	you	have	done	to	ensure	that	you	delete	only	the	desired	rows?

A.	You	should	have	written	a	SELECT	statement	using	the	same	WHERE	constraint
you	used	in	the	DELETE	statement	so	that	you	can	ensure	you	will	be	removing
the	proper	rows.

Hour	6,	“Managing	Database	Transactions”

Quiz	Answers
1.	True	or	false:	If	you	have	committed	several	transactions,	have	several	more
transactions	that	have	not	been	committed,	and	issue	a	ROLLBACK	command,	all
your	transactions	for	the	same	session	are	undone.

A.	False.	When	a	transaction	is	committed,	the	transaction	cannot	be	rolled	back.

2.	True	or	false:	A	SAVEPOINT	command	actually	saves	transactions	after	a	specified

number	of	transactions	have	executed.

A.	False.	A	SAVEPOINT	is	used	only	as	a	point	for	a	ROLLBACK	to	return	to.

3.	Briefly	describe	the	purpose	of	each	one	of	the	following	commands:	COMMIT,
ROLLBACK,	and	SAVEPOINT.

A.	COMMIT	saves	changes	made	by	a	transaction.	ROLLBACK	undoes	changes
made	by	a	transaction.	SAVEPOINT	creates	logical	points	in	the	transaction	to
which	to	roll	back.

4.	What	are	some	differences	in	the	implementation	of	transactions	in	Microsoft	SQL
Server?

A.	SQL	Server	auto-commits	statements	unless	specifically	placed	in	a	transaction
and	has	a	different	syntax	for	SAVEPOINT.	Also,	it	does	not	support	the
RELEASE	SAVEPOINT	command.

5.	What	are	some	performance	implications	when	using	transactions?

A.	Transactions	have	implications	on	temporary	storage	space	because	the	database
server	has	to	keep	track	of	all	the	changes	until	they	are	committed	in	case	of	a
ROLLBACK.

6.	When	using	several	SAVEPOINT	or	SAVE	TRANSACTION	commands,	can	you
rollback	more	than	one?

A.	No,	a	ROLLBACK	will	go	back	only	to	the	first	SAVEPOINT	that	you	ask	it	to
ROLLABACK	to.

Exercise	Answers
1.	Take	the	following	transactions	and	create	a	SAVEPOINT	or	a	SAVE
TRANSACTION	command	after	the	first	three	transactions.	Then	create	a
ROLLBACK	statement	for	your	savepoint	at	the	end.	Try	to	determine	what	the
PASSENGERS	table	will	look	like	after	you	are	done.

A.
Click	here	to	view	code	image

INSERT	INTO	PASSENGERS(FIRSTNAME,LASTNAME,BIRTHDATE,COUNTRYCODE)
VALUES(‘George’,‘Allwell’,‘1981-03-23’,‘US’);
INSERT	INTO	PASSENGERS(FIRSTNAME,LASTNAME,BIRTHDATE,COUNTRYCODE)
VALUES(‘Steve’,‘Schuler’,‘1974-09-11’,‘US’);
INSERT	INTO	PASSENGERS(FIRSTNAME,LASTNAME,BIRTHDATE,COUNTRYCODE)
VALUES(‘Mary’,‘Ellis’,‘1990-11-12’,‘US’);
SAVEPOINT;
UPDATE	PASSENGERS	SET	FIRSTNAME=‘Peter’	WHERE	LASTNAME=‘Allwell’
AND	BIRTHDATE=‘1981-03-23’;
UPDATE	PASSENGERS	SET	COUNTRYCODE=‘AU’	WHERE	FIRSTNAME=‘Mary’
AND	LASTNAME=‘Ellis’;
UPDATE	PASSENGERS	SET	BIRTHDATE=‘1964-09-11’	WHERE	LASTNAME=‘Schuler’;

ROLLBACK;

2.	Take	the	following	group	of	transactions	and	create	a	savepoint	after	the	first	three

transactions.

Then	place	a	COMMIT	statement	at	the	end,	followed	by	a	ROLLBACK	statement	to
your	savepoint.	What	do	you	think	should	happen?

A.
Click	here	to	view	code	image

UPDATE	PASSENGERS	SET	BIRTHDATE=‘Stephen’	WHERE	LASTNAME=‘Schuler’;
DELETE	FROM	PASSENGERS	WHERE	LASTNAME=‘Allwell’	AND	BIRTHDATE=‘1981-03-
23’;
DELETE	FROM	PASSENGERS	WHERE	LASTNAME=‘Schuler’	AND	BIRTHDATE=‘1964-09-
11;
SAVEPOINT	SAVEPOINT;
DELETE	FROM	PASSENGERS	WHERE		LASTNAME=‘Ellis’	AND	BIRTHDATE=‘1990-11-
12’;
COMMIT;
ROLLBACK;

Because	the	statement	is	committed,	the	ROLLBACK	statement	doesn’t	have	an
effect.

Hour	7,	“Introduction	to	the	Database	Queries”

Quiz	Answers
1.	Name	the	required	parts	for	any	SELECT	statement.

A.	The	SELECT	and	FROM	keywords,	also	called	clauses,	are	required	for	all
SELECT	statements.

2.	In	the	WHERE	clause,	are	single	quotation	marks	required	for	all	the	data?

A.	No.	Single	quotation	marks	are	required	when	selecting	alphanumeric	data	types.
Number	data	types	do	not	require	single	quotation	marks.

3.	Can	multiple	conditions	be	used	in	the	WHERE	clause?

A.	Yes.	Multiple	conditions	can	be	specified	in	the	WHERE	clause	of	SELECT,
INSERT,	UPDATE,	and	DELETE	statements.	Multiple	conditions	are	used	with
the	operators	AND	and	OR,	which	are	thoroughly	discussed	in	Hour	8,	“Using
Operators	to	Categorize	Data.”

4.	Is	the	DISTINCT	option	applied	before	or	after	the	WHERE	clause?

A.	The	DISTINCT	option	is	applied	before	the	WHERE	clause.

5.	Is	the	ALL	option	required?

A.	No.	Even	though	the	ALL	option	can	be	used,	it	is	not	required.

6.	How	are	numeric	characters	treated	when	ordering	based	upon	a	character	field?

A.	They	are	sorted	as	ASCII	characters.	This	means	that	numbers	would	be	ordered
like	this:	1,	12,	2,	222,	22222,	3,	33.

7.	How	does	Oracle	handle	its	default	case-sensitivity	differently	from	MySQL	and

Microsoft	SQL	Server?

A.	Oracle	by	default	performs	matches	as	case-sensitive.

8.	How	is	the	ordering	of	the	fields	in	the	ORDER	BY	clause	important?

A.	The	ordering	of	the	columns	in	the	ORDER	BY	clause	determines	the	order	in
which	ordering	is	applied	to	the	statement.

9.	How	is	the	ordering	determined	in	the	ORDER	BY	clause	when	you	use	numbers
instead	of	column	names?

A.	The	numbers	correspond	to	the	columns	defined	in	the	SELECT	portion	of	the
query.	So	the	first	column	is	1,	the	second	is	2,	and	so	on.

Exercise	Answers
1.	Invoke	your	RDBMS	query	editor	on	your	computer.	Using	your
CanaryAirlines	database,	enter	the	following	SELECT	statements.	Determine
whether	the	syntax	is	correct.	If	the	syntax	is	incorrect,	make	corrections	to	the	code
as	necessary.	Use	the	PASSENGERS	table	for	this	exercise.

a.
Click	here	to	view	code	image

SELECT	PASSENGERID,	LASTNAME,	FIRSTNAME,
FROM	PASSENGERS;

A.	This	SELECT	statement	does	not	work	because	there	is	a	comma	after	the
FIRSTNAME	column	that	does	not	belong	there.	The	correct	syntax	follows:

Click	here	to	view	code	image
SELECT	PASSENGERID,	LASTNAME,	FIRSTNAME
FROM	PASSENGERS;

b.
Click	here	to	view	code	image

SELECT	PASSENGERID,	LASTNAME
ORDER	BY	PASSENGERS
FROM	PASSENGERS;

A.	This	SELECT	statement	does	not	work	because	the	FROM	and	ORDER	BY
clauses	are	in	the	incorrect	order.	The	correct	syntax	follows:

Click	here	to	view	code	image
SELECT	PASSENGERID,	LASTNAME
FROM	PASSENGERS
ORDER	BY	PASSENGERS;

c.
Click	here	to	view	code	image

SELECT	PASSENGERID,	LASTNAME,	FIRSTNAME
FROM	PASSENGERS
WHERE	PASSENGERID	=	‘134996’
ORDER	BY	PASSENGERID;

A.	The	syntax	for	this	SELECT	statement	is	correct.

d.
Click	here	to	view	code	image

SELECT	PASSENGERID	BIRTHDATE,	LASTNAME
FROM	PASSENGERS
WHERE	PASSENGERID	=	‘134996’
ORDER	BY	1;

A.	The	syntax	for	this	SELECT	statement	is	correct.

e.
Click	here	to	view	code	image

SELECT	PASSENGERID,	LASTNAME,	FIRSTNAME
FROM	PASSENGERS
WHERE	PASSENGERID	=	‘134996’
ORDER	BY	3,	1,	2;

A.	The	syntax	for	this	SELECT	statement	is	correct.	Notice	the	order	of	the	columns
in	the	ORDER	BY.	This	SELECT	statement	returns	records	from	the	database
that	are	sorted	by	FIRSTNAME,	and	then	by	PASSENGERID,	and	finally	by
LASTNAME.

2.	Does	the	following	SELECT	statement	work?
Click	here	to	view	code	image

SELECT	LASTNAME,	FIRSTNAME,	BIRTHDATE
FROM	PASSENGERS
WHERE	PASSENGERID	=	‘99999999’;

A.	The	syntax	is	correct	and	the	statement	worked,	even	though	no	data	was
returned.	No	data	was	returned	because	there	was	no	row	with	a	PASSENGERID
of	333333333.

3.	Write	a	SELECT	statement	that	returns	the	name	and	seating	capacity	of	each
airplane	from	the	AIRCRAFT	table.	Which	type	of	plane	has	the	largest	capacity?
How	many	planes	are	freight	planes?	Where	do	the	freight-only	planes	show	up	in
your	ordered	results?

A.
Click	here	to	view	code	image

SELECT	AIRCRAFTTYPE,	SEATING
FROM	AIRCRAFT	ORDER	BY	SEATING	DESC;

The	Boeing	747s	are	the	largest.

Three	planes	are	freight	planes.

They	end	up	as	the	last	ones	in	the	list	if	ordering	by	SEATING	DESC.

4.	Write	a	query	that	generates	a	list	of	all	passengers	who	were	born	after	2015-01-01.

A.
Click	here	to	view	code	image

SELECT	*	FROM	PASSENGERS
WHERE	BIRTHDATE>‘2015-01-01’;

5.	Answers	will	vary.

Hour	8,	“Using	Operators	to	Categorize	Data”

Quiz	Answers
1.	True	or	false:	Both	conditions	when	using	the	OR	operator	must	be	TRUE.

A.	False.	Only	one	of	the	conditions	must	be	TRUE.

2.	True	or	false:	All	specified	values	must	match	when	using	the	IN	operator.

A.	False.	Only	one	of	the	values	must	match.

3.	True	or	false:	The	AND	operator	can	be	used	in	the	SELECT	and	the	WHERE
clauses.

A.	False.	The	AND	operator	can	be	used	only	in	the	WHERE	clause.

4.	True	or	false:	The	ANY	operator	can	accept	an	expression	list.

A.	False.	The	ANY	operator	cannot	take	an	expression	list.

5.	What	is	the	logical	negation	of	the	IN	operator?

A.	NOT	IN

6.	What	is	the	logical	negation	of	the	ANY	and	ALL	operators?

A.	<>ANY	and	<>ALL

7.	What,	if	anything,	is	wrong	with	the	following	SELECT	statements?

a.
Click	here	to	view	code	image

SELECT	AIRCRAFTTYPE
FROM	AIRCRAFT
WHERE	SEATING	BETWEEN	200,	300;

A.	The	AND	is	missing	between	200,	300.	The	correct	syntax	is
Click	here	to	view	code	image

SELECT	AIRCRAFTTYPE
FROM	AIRCRAFT
WHERE	SEATING	BETWEEN	200	AND	300;

b.
Click	here	to	view	code	image

SELECT	DISTANCE	+	AIRPLANECODE
FROM	ROUTES;

A.	The	AIRPLANECODE	column	is	a	VARCHAR	data	type	and	is	in	the	incorrect
format	for	arithmetic	functions.

c.
Click	here	to	view	code	image

SELECT	FIRSTNAME,	LASTNAME
FROM	PASSENGERS
WHERE	BIRTHDATE	BETWEEN	1980-01-01
AND	1990-01-01
AND	COUNTRYCODE	=	‘US’
OR	COUNTRYCODE	=	‘GB’
AND	PASSENGERID	LIKE	‘%55%;

A.	The	syntax	is	correct.

Exercise	Answers
1.	Using	the	ROUTES	table,	write	a	SELECT	statement	that	returns	all	routes
originating	from	Indianapolis,	with	route	codes	starting	with	‘IND’.	Order	your
results	based	on	the	route	name	in	alphabetical	order	and	then	the	distance	of	the
route	going	from	largest	to	smallest.

A.
Click	here	to	view	code	image

SELECT	*	FROM	ROUTES
WHERE	ROUTECODE	LIKE	‘IND%’
ORDER	BY	ROUTECODE,	DISTANCE	DESC;

2.	Rewrite	the	query	from	Exercise	1	to	show	only	those	flights	that	are	between	1000
and	2000	miles	long.

A.
Click	here	to	view	code	image

SELECT	*	FROM	ROUTES
WHERE	ROUTECODE	LIKE	‘IND%’
AND	DISTANCE	BETWEEN	1000	AND	2000
ORDER	BY	ROUTECODE,	DISTANCE	DESC;

3.	Assuming	that	you	used	the	BETWEEN	operator	in	Exercise	2,	rewrite	your	SQL
statement	to	achieve	the	same	results	using	different	operators.	If	you	did	not	use	the
BETWEEN	operator,	do	so	now.

A.
Click	here	to	view	code	image

SELECT	*	FROM	ROUTES
WHERE	ROUTECODE	LIKE	‘IND%’
AND	DISTANCE	>=	1000
AND	DISTANCE	<=	2000
ORDER	BY	ROUTECODE,	DISTANCE	DESC;

4.	Rewrite	your	query	so	that	instead	of	showing	results	where	the	distance	is	between
1000	and	2000	miles,	you	show	all	distances	except	that	range.	Show	at	least	two
ways	that	you	could	achieve	this	result.

A.
Click	here	to	view	code	image

SELECT	*	FROM	ROUTES
WHERE	ROUTECODE	LIKE	‘IND%’
AND	(DISTANCE	<	1000
OR	DISTANCE	>	2000)
ORDER	BY	ROUTECODE,	DISTANCE	DESC;

SELECT	*	FROM	ROUTES
WHERE	ROUTECODE	LIKE	‘IND%’
AND	DISTANCE	NOT	BETWEEN	1000	AND	2000
ORDER	BY	ROUTECODE,	DISTANCE	DESC;

5.	Write	a	SELECT	statement	that	returns	the	route	code,	distance,	and	travel	time,	and
then	calculates	a	cost	column	by	multiplying	travel	time	by	the	fuel	cost	per	minute
value	for	all	routes	originating	from	Indianapolis.	Order	your	results	from	most
expensive	routes	to	least	expensive.

A.
Click	here	to	view	code	image

SELECT	ROUTECODE,	DISTANCE,	TRAVELTIME,
TRAVELTIME	*	FUELCOSTPERMINUTE	AS	COST
FROM	ROUTES
WHERE	ROUTECODE	LIKE	‘IND%’
ORDER	BY	3	DESC;

6.	Rewrite	your	statement	from	Exercise	5	to	include	a	10%	fuel	surcharge	added	onto
the	cost.

A.
Click	here	to	view	code	image

SELECT	ROUTECODE,	DISTANCE,	TRAVELTIME,
(TRAVELTIME	*	FUELCOSTPERMINUTE)*1.1	AS	COST
FROM	ROUTES
WHERE	ROUTECODE	LIKE	‘IND%’
ORDER	BY	3	DESC;

7.	Enhance	your	statement	from	Exercise	6	by	including	those	routes	with	route	codes
IND-MFK,	IND-MYR,	and	IND-MDA.	There	are	at	least	two	ways	to	write	this
constraint.

A.
Click	here	to	view	code	image

SELECT	ROUTECODE,	DISTANCE,	TRAVELTIME,
(TRAVELTIME	*	FUELCOSTPERMINUTE)*1.1	AS	COST
FROM	ROUTES
WHERE	ROUTECODE	IN	(‘IND-MFK’,‘IND-MYR’,‘IND-MDA’)
ORDER	BY	3	DESC;

SELECT	ROUTECODE,	DISTANCE,	TRAVELTIME,
(TRAVELTIME	*	FUELCOSTPERMINUTE)*1.1	AS	COST
FROM	ROUTES
WHERE	(
ROUTECODE	=	‘IND-MFK’
OR	ROUTECODE	=	‘IND-MYR’
OR	ROUTECODE	=	‘IND-MDA’
)

8.	Now	rewrite	your	statement	from	Exercise	7,	include	an	additional	column	called

COST_PER_MILE,	and	use	the	distance	column	that	is	in	miles	to	calculate	the
resulting	value.	Pay	special	attention	to	parentheses	in	your	answer.
A.

Click	here	to	view	code	image
SELECT	ROUTECODE,	DISTANCE,	TRAVELTIME,
(TRAVELTIME	*	FUELCOSTPERMINUTE)*1.1	AS	COST,
((TRAVELTIME	*	FUELCOSTPERMINUTE)*1.1)/DISTANCE	AS	COST_PER_MILE
FROM	ROUTES
WHERE	ROUTECODE	IN	(‘IND-MFK’,‘IND-MYR’,‘IND-MDA’)
ORDER	BY	3	DESC;

Hour	9,	“Summarizing	Data	Results	from	a	Query”

Quiz	Answers
1.	True	or	False:	The	AVG	function	returns	an	average	of	all	rows	from	a	SELECT
column,	including	any	NULL	values.

A.	False.	The	NULL	values	are	not	considered.

2.	True	or	False:	The	SUM	function	adds	column	totals.

A.	False.	The	SUM	function	returns	a	total	for	a	group	of	rows.

3.	True	or	False:	The	COUNT(*)	function	counts	all	rows	in	a	table.

A.	True.

4.	True	or	false:	The	COUNT([column	name])	function	counts	NULL	values.

A.	False.

5.	Do	the	following	SELECT	statements	work?	If	not,	what	fixes	the	statements?

a.
SELECT	COUNT	*
FROM	EMPLOYEES;

A.	This	statement	does	not	work	because	the	left	and	right	parentheses	are	missing
around	the	asterisk.	The	correct	syntax	is
SELECT	COUNT(*)
	FROM	EMPLOYEES;

b.
Click	here	to	view	code	image

SELECT	COUNT(EMPLOYEEID),	SALARY
FROM	EMPLOYEES;

A.	Yes,	this	statement	works.

c.
Click	here	to	view	code	image

SELECT	MIN(PAYRATE),	MAX(SALARY)
FROM	EMPLOYEES

WHERE	SALARY	>	50000;

A.	Yes,	this	statement	works.

d.
Click	here	to	view	code	image

SELECT	COUNT(DISTINCT	EMPLOYEEID)	FROM	EMPLOYEES;

A.	Yes,	this	statement	works.

e.
Click	here	to	view	code	image

SELECT	AVG(LASTNAME)	FROM	EMPLOYEES;

A.	No,	because	the	column	value	being	averaged	needs	to	be	numeric.

f.
Click	here	to	view	code	image

SELECT	AVG(CAST(ZIP	AS	INT))	FROM	EMPLOYEES;

A.	Yes,	this	statement	works	because	you	cast	the	ZIP	column	to	an	integer.

Exercise	Answers
1.	Use	the	EMPLOYEES	table	to	construct	SQL	statements	to	solve	the	following
exercises:

a.	What	is	the	average	salary?
Click	here	to	view	code	image

SELECT	AVG(SALARY)	FROM	EMPLOYEES;

b.	What	is	the	maximum	pay	rate	for	hourly	employees?
Click	here	to	view	code	image

SELECT	MAX(PAYRATE)	FROM	EMPLOYEES;

c.	What	are	the	total	salaries?
Click	here	to	view	code	image

SELECT	SUM(SALARY)	FROM	EMPLOYEES;

d.	What	is	the	minimum	pay	rate?
Click	here	to	view	code	image

SELECT	MIN(PAYRATE)	FROM	EMPLOYEES;

e.	How	many	rows	are	in	the	table?
Click	here	to	view	code	image

SELECT	COUNT(*)		FROM	EMPLOYEES;

2.	Write	a	query	to	determine	how	many	employees	are	in	the	company	whose	last
names	begin	with	a	G.

Click	here	to	view	code	image
SELECT	COUNT(*)		FROM	EMPLOYEES
WHERE	LASTNAME	LIKE	‘G’;

3.	Write	a	query	to	determine	the	minimum	and	maximum	salary	and	pay	rates	per	city
for	employees.

Click	here	to	view	code	image
SELECT	CITY,	MIN(SALARY)	AS	MIN_SALARY,	MAX(SALARY)	AS	MAX_SALARY,
	MIN(PAYRATE)	AS	MIN_PAYRATE,	MAX(PAYRATE)	AS	MAX_PAYRATE
FROM	EMPLOYEES
GROUP	BY	CITY;

4.	Write	two	sets	of	queries	to	find	the	first	employee	name	and	last	employee	name
when	they	are	listed	in	alphabetical	order.

Click	here	to	view	code	image
SELECT	TOP	1	FIRSTNAME,	LASTNAME	FROM	EMPLOYEES
ORDER	BY	LASTNAME,	FIRSTNAME;

SELECT	TOP	1	FIRSTNAME,	LASTNAME	FROM	EMPLOYEES
ORDER	BY	LASTNAME	DESC,	FIRSTNAME	DESC;

5.	Write	a	query	to	perform	an	AVG	function	on	the	employee	names.	Does	the
statement	work?	Determine	why	it	is	that	you	got	that	result.

Click	here	to	view	code	image
SELECT	AVG(FIRSTNAME)	AS	AVG_NAME		FROM	EMPLOYEES;

No;	it	does	not	work	because	the	value	being	averaged	needs	to	be	numeric.

6.	Write	a	query	to	perform	an	average	of	the	employee’s	salaries	that	takes	NULL
values	into	account.	Hint:	You	won’t	be	using	the	AVG	function.

Click	here	to	view	code	image
SELECT	SUM(SALARY)/COUNT(*)	AS	AVG_SALARY		FROM	EMPLOYEES;

Hour	10,	“Sorting	and	Grouping	Data”

Quiz	Answers
1.	Will	the	following	SQL	statements	work?

a.
Click	here	to	view	code	image

SELECT	SUM(SALARY)	AS	TOTAL_SALARY,	EMPLOYEEID
FROM	EMPLOYEES
GROUP	BY	1	and	2;

A.	No,	the	AND	in	the	GROUP	BY	clause	needs	to	be	replaced	with	a	comma.

b.
Click	here	to	view	code	image

SELECT	EMPLOYEEID,	MAX(SALARY)
FROM	EMPLOYEES
GROUP	BY	SALARY,	EMPLOYEEID;

A.	Yes,	the	statement	will	work.

c.

Click	here	to	view	code	image
SELECT	EMPLOYEEID,	COUNT(SALARY)
FROM	EMPLOYEES
ORDER	BY	EMPLOYEEID
GROUP	BY	SALARY;

A.	No,	the	GROUP	BY	and	ORDER	BY	clauses	are	out	of	order.

d.
Click	here	to	view	code	image

SELECT	YEAR(DATE_HIRE)	AS	YEAR_HIRED,SUM(SALARY)
FROM	EMPLOYEES
GROUP	BY	1
HAVING	SUM(SALARY)>20000;

A.	No,	the	1	in	the	GROUP	BY	statement	needs	to	be	replaced	with
YEAR(DATE_HIRE).

2.	What	is	the	purpose	of	the	HAVING	clause	and	which	other	clause	is	it	closest	to?

A.	The	HAVING	clause	is	used	to	constrain	the	groups	returned	by	the	GROUP	BY
clause.	Therefore,	it	is	closest	to	the	WHERE	clause	in	functionality.

3.	True	or	false:	You	must	also	use	the	GROUP	BY	clause	when	using	the	HAVING
clause.

A.	False;	you	do	not	need	the	GROUP	BY	clause	unless	you	have	non-aggregated
column	data	in	your	query.

4.	True	or	false:	The	following	SQL	statement	returns	a	total	of	the	salaries	by	groups:
SELECT	SUM(SALARY)
FROM	EMPLOYEES;

A.	False,	the	statement	does	not	contain	the	column	to	group	by	or	the	GROUP	BY
clause,	so	it	will	display	the	sum	of	all	salaries.

5.	True	or	false:	The	columns	selected	must	appear	in	the	GROUP	BY	clause	in	the
same	order.

A.	False.

6.	True	or	false:	The	HAVING	clause	tells	the	GROUP	BY	which	groups	to	include.

A.	True.

Exercises
1.	No	answer	required.

2.	No	answer	required.

3.	No	answer	required.

4.	Modify	the	query	in	Exercise	3	to	order	the	results	in	descending	order,	from
highest	count	to	lowest.

A.

Click	here	to	view	code	image
SELECT	CITY,	COUNT(*)	AS	CITY_COUNT
FROM	EMPLOYEES
GROUP	BY	CITY
HAVING	COUNT(*)	>	15
ORDER	BY	2	DESC;

5.	Write	a	query	to	list	the	average	pay	rate	and	salary	by	position	from	the
EMPLOYEES	table.

A.
SELECT	POSITION,
AVG(SALARY)	AS	AVG_SALARY,
AVG(PAYRATE)	AS	AVG_PAYRATE,
FROM	EMPLOYEES
GROUP	BY	POSITION;

6.	Write	a	query	to	list	the	average	salary	by	position	from	the	EMPLOYEES	table
where	the	average	salary	is	greater	than	40000.

A.
SELECT	POSITION,
(SALARY)	AS	AVG_SALARY
FROM	EMPLOYEES
GROUP	BY	POSITION
HAVING	AVG(SALARY)>40000;

7.	Write	the	same	query	you	used	for	Exercise	6,	but	find	the	average	salary	only	for
those	people	making	more	than	40000	grouped	by	city	and	position	and	compare	the
results.	Explain	the	difference.

A.
SELECT	CITY,POSITION,
AVG(SALARY)	AS	AVG_SALARY
FROM	EMPLOYEES
WHERE	SALARY>40000
GROUP	BY	CITY,POSITION;

The	WHERE	clause	factors	out	individual	rows,	whereas	the	HAVING	clause	reduces
the	number	of	groups.

Hour	11,	“Restructuring	the	Appearance	of	Data”

Quiz	Answers
1.	Match	the	descriptions	with	the	possible	functions.

A.

2.	True	or	false:	Using	functions	in	a	SELECT	statement	to	restructure	the	appearance
of	data	in	output	also	affects	the	way	the	data	is	stored	in	the	database.

A.	False.

3.	True	or	false:	The	outermost	function	is	always	resolved	first	when	functions	are
embedded	within	other	functions	in	a	query.

A.	False.	The	innermost	function	is	always	resolved	first	when	embedding	functions
within	one	another.

Exercise	Answers
1.	No	answer	required.

2.	No	answer	required.

3.	Write	a	SQL	statement	that	lists	employee	email	addresses.	Email	is	not	a	stored
column.	The	email	address	for	each	employee	should	be	as	follows:

FIRST.LAST	@PERPTECH.COM

For	example,	John	Smith’s	email	address	is	JOHN.SMITH@PERPTECH.COM.

A.
Click	here	to	view	code	image

SELECT	CONCAT(FIRSTNAME,	‘.’,	LASTNAME,	‘@PERPTECH.COM’)
FROM	EMPLOYEES;

4.	Write	a	SQL	statement	that	lists	each	employee’s	name	and	phone	number	in	the
following	formats:

a.	The	name	should	be	displayed	as	SMITH,	JOHN.

b.	The	employee	ID	should	be	displayed	as	the	first	three	letters	of	the	last	name	in
uppercase,	a	dash,	and	then	the	employee	number.	Example:	SMI-4203

c.	The	phone	number	should	be	displayed	as	(999)999-9999.

A.
Click	here	to	view	code	image

SELECT	CONCAT(LASTNAME,	‘,	‘,	FIRSTNAME),
CONCAT(LEFT(LASTNAME,3),	‘-‘,CAST(EMPLOYEEID	AS	VARCHAR(20))),
CONCAT(‘(‘,
SUBSTRING(PHONENUMBER,1,3),’)’,
UBSTRING(PHONENUMBER,4,3),’-‘,
SUBSTRING(PHONENUMBER,7,4))

FROM	EMPLOYEES;

Hour	12,	“Understanding	Dates	and	Times”

Quiz	Answers
1.	From	where	is	the	system	date	and	time	normally	derived?

A.	The	system	date	and	time	are	derived	from	the	current	date	and	time	of	the
operating	system	on	the	host	machine.

2.	What	are	the	standard	internal	elements	of	a	DATETIME	value?

A.	YEAR,	MONTH,	DAY,	HOUR,	MINUTE,	and	SECOND

3.	What	could	be	a	major	factor	concerning	the	representation	and	comparison	of	date
and	time	values	if	your	company	is	an	international	organization?

A.	The	awareness	of	time	zones	might	be	a	concern.

4.	Can	a	character	string	date	value	be	compared	to	a	date	value	defined	as	a	valid
DATETIME	data	type?

A.	A	DATETIME	data	type	cannot	be	accurately	compared	to	a	date	value	defined
as	a	character	string.	The	character	string	must	first	be	converted	to	the
DATETIME	data	type.

5.	What	would	you	use	in	SQL	Server	and	Oracle	to	get	the	current	date	and	time?

A.	NOW()

Exercise	Answers
1.	No	answer	required.

2.	No	answer	required.

3.	No	answer	required.

4.	No	answer	required.

5.	Using	Exercise	4,	determine	what	day	of	the	week	each	employee	was	hired.

A.	Use	the	following	statement	to	find	the	answer:
Click	here	to	view	code	image

SELECT	EMPLOYEEID,	DAYNAME(HIREDATE)
FROM	EMPLOYEES;

6.	Write	a	query	like	Exercise	4	except	use	a	function	to	show	how	many	days	the
employee	has	worked	for	the	company.	Could	you	also	estimate	years?

A.	Use	the	following	statement	to	find	the	answer:
Click	here	to	view	code	image

SELECT	EMPLOYEEID,	DATEDIFF(DAY,HIREDATE,GETDATE())	AS	DAYS_EMPLOYED
FROM	EMPLOYEES;
SELECT	EMPLOYEEID,	DATEDIFF(YEAR,HIREDATE,GETDATE())	AS	DAYS_EMPLOYED

FROM	EMPLOYEES;

7.	Write	a	query	to	determine	today’s	Julian	date	(day	of	year).

A.	Use	the	following	statement	to	find	the	answer:
Click	here	to	view	code	image

SELECT	DAYOFYEAR(CURRENT_DATE);

Hour	13,	“Joining	Tables	in	Queries”

Quiz	Answers
1.	What	type	of	join	would	you	use	to	return	records	from	one	table,	regardless	of	the
existence	of	associated	records	in	the	related	table?

A.	You	would	use	an	outer	join.

2.	The	JOIN	conditions	are	located	in	what	part	of	the	SQL	statement?

A.	The	JOIN	conditions	are	located	in	the	WHERE	clause.

3.	What	type	of	JOIN	do	you	use	to	evaluate	equality	among	rows	of	related	tables?

A.	You	would	use	an	equijoin.

4.	What	happens	if	you	select	from	two	different	tables	but	fail	to	join	the	tables?

A.	You	receive	a	Cartesian	product	by	not	joining	the	tables.	(This	is	also	called	a
cross	join.)

5.	Use	the	following	tables	to	answer	the	next	questions:
Click	here	to	view	code	image

ORDERS_TBL
ORD_NUM							VARCHAR2(10)		NOT	NULL						primary	key
CUST_ID							VARCHAR2(10)		NOT	NULL
PROD_ID							VARCHAR2(10)		NOT	NULL
QTY											INTEGER							NOT	NULL
ORD_DATE						DATE

PRODUCTS_TBL
PROD_ID							VARCHAR2(10)		NOT	NULL					primary	key
PROD_DESC					VARCHAR2(40)		NOT	NULL
COST										DECIMAL(,2)			NOT	NULL

Is	the	following	syntax	correct	for	using	an	outer	join?
Click	here	to	view	code	image

SELECT	C.CUST_ID,	C.CUST_NAME,	O.ORD_NUM
FROM	CUSTOMER_TBL	C,	ORDERS_TBL	O
WHERE	C.CUST_ID(+)	=	O.CUST_ID(+)

A.	No,	the	syntax	is	not	correct.	The	(+)	operator	should	follow	only	the
O.CUST_ID	column	in	the	WHERE	clause.	The	correct	syntax	is

Click	here	to	view	code	image
SELECT	C.CUST_ID,	C.CUST_NAME,	O.ORD_NUM
FROM	CUSTOMER_TBL	C,	ORDERS_TBL	O
WHERE	C.CUST_ID	=	O.CUST_ID(+)

What	would	the	query	look	like	if	you	used	the	verbose	JOIN	syntax?

A.
Click	here	to	view	code	image

SELECT	C.CUST_ID,	C.CUST_NAME,	O.ORD_NUM
FROM	CUSTOMER_TBL	C	LEFT	OUTER	JOIN	ORDERS_TBL	O
ON	C.CUST_ID	=	O.CUST_ID

Exercise	Answers
1.	No	answer	required.

2.	No	answer	required.

3.	Rewrite	the	SQL	query	from	Exercise	2	using	the	INNER	JOIN	syntax.

A.	SELECT	E.LASTNAME,	E.FIRSTNAME,	A.AIRPORTNAME
FROM	EMPLOYEES	E
INNER	JOIN	AIRPORTS	A
ON	E.AIRPORTID=A.AIRPORTID
AND	E.STATE=‘IN’;

4.	Write	a	SQL	statement	to	return	the	FLIGHTID,	AIRPORTNAME,	and	CITY
columns	from	AIRPORTS	and	FLIGHTDURATION	and	FLIGHTSTART	columns
from	FLIGHTS.	Use	both	types	of	INNER	JOIN	techniques.	When	that’s
completed,	use	the	queries	to	determine	the	average	flight	duration	per	city	during
the	month	of	May,	2013.

A.
Click	here	to	view	code	image

SELECT	F.FLIGHTID,	A.AIRPORTNAME,	A.CITY,
F.FLIGHTDURATION,	F.FLIGHTSTART
FROM	AIRPORTS	A
INNER	JOIN	ROUTES	R	ON	A.AIRPORTID	=	R.SOURCEAIRPORTID
INNER	JOIN	FLIGHTS	F	ON	R.ROUTEID	=	F.ROUTEID
WHERE	MONTH(F.FLIGHTSTART)=5	AND	YEAR(F.FLIGHTSTART)=2013

SELECT	F.FLIGHTID,	A.AIRPORTNAME,	A.CITY,
F.FLIGHTDURATION,	F.FLIGHTSTART
FROM	AIRPORTS	A
,ROUTES	R
,FLIGHTS	F
WHERE	MONTH(F.FLIGHTSTART)=5	AND	YEAR(F.FLIGHTSTART)=2013
AND	A.AIRPORTID	=	R.SOURCEAIRPORTID
AND	R.ROUTEID	=	F.ROUTEID

5.	No	answer	required.

Hour	14,	“Using	Subqueries	to	Define	Unknown	Data”

Quiz	Answers
1.	What	is	the	function	of	a	subquery	when	used	with	a	SELECT	statement?

A.	The	main	function	of	a	subquery	when	used	with	a	SELECT	statement	is	to
return	data	that	the	main	query	can	use	to	resolve	the	query.

2.	Can	you	update	more	than	one	column	when	using	the	UPDATE	statement	with	a
subquery?

A.	Yes,	you	can	update	more	than	one	column	using	the	same	UPDATE	and
subquery	statement.

3.	Do	the	following	have	the	correct	syntax?	If	not,	what	is	the	correct	syntax?

a.
Click	here	to	view	code	image

SELECT	PASSENGERID,	FIRSTNAME,LASTNAME,COUNTRYCODE
FROM	PASSENGERS
WHERE	PASSENGERID	IN
(SELECT	PASSENGERID
FROM	TRIPS
WHERE	TRIPID	BETWEEN	2390	AND	2400);

A.	Yes,	the	syntax	is	correct.

b.
SELECT	EMPLOYEEID,	SALARY
FROM	EMPLOYEES
WHERE	SALARY	BETWEEN	‘20000’
AND	(SELECT	SALARY
FROM	EMPLOYEES
WHERE	SALARY	=	‘40000’);

A.	It	would	produce	an	error	because	the	subquery	returns	more	than	one	row.

c.
UPDATE	PASSENGERS
SET	COUNTRYCODE	=	‘NZ’
WHERE	PASSENGERID	=
(SELECT	PASSENGERID
FROM	TRIPS
WHERE	TRIPID	=	2405);

A.	This	would	run	correctly	and	update	one	row.

4.	What	would	happen	if	you	ran	the	following	statement?
DELETE	FROM	EMPLOYEES
WHERE	EMPLOYEEID	IN
(SELECT	EMPLOYEEID
FROM	RICH_EMPLOYEES);

A.	All	rows	that	you	retrieved	from	RICH_EMPLOYEES	would	be	deleted	from	the
EMPLOYEES	table.	A	WHERE	clause	in	the	subquery	is	highly	advised.

Exercise	Answers
1.	No	answer	required.

2.	Using	a	subquery,	write	a	SQL	statement	to	update	the	PASSENGERS	table.	Find
the	passenger	with	the	TripID	3120,	and	change	the	passenger’s	name	to	RYAN

STEPHENS.

A.
Click	here	to	view	code	image

UPDATE	PASSENGERS
			SET	FIRSTNAME=‘RYAN’,	LASTNAME=‘STEPHENS’
			WHERE	PASSENGERID	=
																		(SELECT	PASSENGERID
																			FROM	TRIPS
																			WHERE	TRIPID	=	3120);

3.	Using	a	subquery,	write	a	query	that	returns	the	counts	of	passengers	by	country	that
are	leaving	on	July	4,	2013.

4.	Using	a	subquery,	write	a	query	that	lists	all	passenger	information	for	those
passengers	that	are	taking	trips	that	are	less	than	21	days	from	beginning	to	end.

Hour	15,	“Combining	Multiple	Queries	into	One”

Quiz	Answers
1.	Is	the	syntax	correct	for	the	following	compound	queries?	If	not,	what	would	correct
the	syntax?	Use	the	PASSENGERS	and	TRIPS	tables.

a.
Click	here	to	view	code	image

SELECT	PASSENGERID,	BIRTHDATE,	FIRSTNAME
FROM	PASSENGERS
UNION
SELECT	PASSENGERID,	LEAVING,	RETURNING
FROM	TRIPS;

A.	No,	the	FIRSTNAME	column	in	the	first	part	of	the	query	does	not	match	the
datetype	of	the	RETURNING	field	in	the	second	part	of	the	query.

b.
Click	here	to	view	code	image

SELECT	PASSENGERID	FROM	PASSENGERS
UNION	ALL
SELECT	PASSENGERID	FROM	TRIPS
ORDER	BY	PASSENGERID;

A.	Yes,	it	works	correctly.

c.
Click	here	to	view	code	image

SELECT	PASSENGERID	FROM	TRIPS
INTERSECT
SELECT	PASSENGERID	FROM	PASSENGERS
ORDER	BY	1;

A.	Yes,	it	works	correctly.

2.	Match	the	correct	operator	to	the	following	statements.

Exercise	Answers
1.	Use	the	PASSENGERS	and	TRIPS	tables	to	write	a	compound	query	to	find	the
passengers	who	have	scheduled	a	trip.

A.
Click	here	to	view	code	image

SELECT	*	FROM	PASSENGERS
WHERE	PASSENGERID	IN
					(SELECT	PASSENGERID	FROM	TRIPS)
ORDER	BY	PASSENGERID;

2.	Write	a	compound	query	to	find	the	passengers	who	have	not	scheduled	a	trip.

A.
Click	here	to	view	code	image

SELECT	*	FROM	PASSENGERS
WHERE	PASSENGERID	NOT	IN
					(SELECT	PASSENGERID	FROM	TRIPS)
ORDER	BY	PASSENGERID;

3.	Write	a	query	that	uses	EXCEPT	to	list	all	the	passengers	who	have	taken	a	trip
except	those	that	originated	in	Albany.

A.
Click	here	to	view	code	image

SELECT	*	FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
WHERE	T.SourceFlightID	IN
					(
					SELECT	FLIGHTID	FROM	FLIGHTS	F
							INNER	JOIN	ROUTES	R	ON	F.ROUTEID=R.ROUTEID
					WHERE	R.SOURCEAIRPORTID
					NOT	IN	(SELECT	AIRPORTID	FROM	AIRPORTS	WHERE	CITY=‘Albany’)
)
ORDER	BY	P.PASSENGERID;

Hour	16,	“Using	Indexes	to	Improve	Performance”

Quiz	Answers
1.	What	are	some	major	disadvantages	of	using	indexes?

A.	Major	disadvantages	of	an	index	include	slowing	batch	jobs,	storage	space	on	the
disk,	and	maintenance	upkeep	on	the	index.

2.	Why	is	the	order	of	columns	in	a	composite	index	important?

A.	Because	query	performance	is	improved	by	putting	the	column	with	the	most
restrictive	values	first.

3.	Should	a	column	with	a	large	percentage	of	NULL	values	be	indexed?

A.	No.	A	column	with	a	large	percentage	of	NULL	values	should	not	be	indexed
because	the	speed	of	accessing	these	rows	degrades	when	the	value	of	a	large
percentage	of	rows	is	the	same.

4.	Is	the	main	purpose	of	an	index	to	stop	duplicate	values	in	a	table?

A.	No.	The	main	purpose	of	an	index	is	to	enhance	data	retrieval	speed;	although	a
unique	index	stops	duplicate	values	in	a	table.

5.	True	or	false:	The	main	reason	for	a	composite	index	is	for	aggregate	function	usage
in	an	index.

A.	False.	The	main	reason	for	composite	indexes	is	for	two	or	more	columns	in	the
same	table	to	be	indexed.

6.	What	does	cardinality	refer	to?	What	is	considered	a	column	of	high-cardinality?

A.	Cardinality	refers	to	the	uniqueness	of	the	data	within	a	column.	The	SSN
column	is	an	example	of	such	a	column.

Exercise	Answers
1.	For	the	following	situations,	decide	whether	an	index	should	be	used	and,	if	so,
what	type	of	index	should	be	used:

a.	Several	columns,	but	a	rather	small	table.

A.	Being	a	very	small	table,	no	index	is	needed.

b.	Medium-sized	table;	no	duplicates	should	be	allowed.

A.	A	unique	index	could	be	used.

c.	Several	columns,	very	large	table,	several	columns	used	as	filters	in	the	WHERE
clause.

A.	A	composite	index	on	the	columns	used	as	filters	in	the	WHERE	clause	should	be
the	choice.

d.	Large	table,	many	columns,	a	lot	of	data	manipulation

A.	A	choice	of	a	single-column	or	composite	index	should	be	considered,	depending
on	filtering,	ordering,	and	grouping.	For	the	large	amount	of	data	manipulation,
the	index	could	be	dropped	and	re-created	after	the	INSERT,	UPDATE,	or
DELETE	jobs	were	done.

2.	No	answer	required.

3.	Create	a	statement	to	alter	the	index	you	just	created	to	make	it	unique.	Why	doesn’t
it	work?

A.

Click	here	to	view	code	image
DROP	INDEX	EP_POSITON	ON	EMPLOYEES;
															CREATE	UNIQUE	INDEX	EP_POSITION
															ON	EMPLOYEES(POSITION);

It	will	not	work	because	there	are	duplicate	values	in	the	column.

4.	For	the	FLIGHTS	table,	choose	some	columns	to	make	up	a	unique	index	for	that
table.	Explain	your	reasoning	behind	picking	those	columns.

A.	Answers	will	vary.

5.	Study	the	tables	used	in	this	book.	List	some	good	candidates	for	indexed	columns
based	on	how	a	user	might	search	for	data.

A.	Answers	will	vary.

6.	Create	a	multicolumn	index	on	FLIGHTS.	Include	the	following	columns:
ROUTEID,	AIRCRAFTFLEETID,	and	STATUSCODE.

7.	No	answer	required.

Hour	17,	“Improving	Database	Performance”

Quiz	Answers
1.	Would	the	use	of	a	unique	index	on	a	small	table	be	of	any	benefit?

A.	The	index	might	not	be	of	any	use	for	performance	issues,	but	the	unique	index
would	keep	referential	integrity	intact.	Referential	integrity	is	discussed	in	Hour
3,	“Managing	Database	Objects.”

2.	What	happens	when	the	optimizer	chooses	not	to	use	an	index	on	a	table	when	a
query	has	been	executed?

A.	A	full	table	scan	occurs.

3.	Should	the	most	restrictive	clause(s)	be	placed	before	the	join	condition(s)	or	after
the	join	conditions	in	the	WHERE	clause?

A.	The	most	restrictive	clause(s)	should	be	evaluated	before	the	join	condition(s)
because	join	conditions	normally	return	a	large	number	of	rows.

Exercise	Answers
1.	Rewrite	the	following	SQL	statements	to	improve	their	performance.	Use
EMPLOYEE_TBL	and	EMPLOYEE_PAY_TBL	as	described	here:

Click	here	to	view	code	image
EMPLOYEE_TBL
EMP_ID								VARCHAR(9)				NOT	NULL					Primary	key
LAST_NAME					VARCHAR(15)			NOT	NULL,
FIRST_NAME				VARCHAR(15)			NOT	NULL,
MIDDLE_NAME			VARCHAR(15),
ADDRESS							VARCHAR(30)			NOT	NULL,
CITY										VARCHAR(15)			NOT	NULL,
STATE									VARCHAR(2)				NOT	NULL,

ZIP											INTEGER(5)				NOT	NULL,
PHONE									VARCHAR(10),
PAGER									VARCHAR(10),
EMPLOYEE_PAY_TBL
EMP_ID											VARCHAR(9)					NOT	NULL		primary	key
POSITION									VARCHAR(15)				NOT	NULL,
DATE_HIRE								DATETIME,
PAY_RATE									DECIMAL(4,2)			NOT	NULL,
DATE_LAST_RAISE		DATETIME,
SALARY											DECIMAL(8,2),
BONUS												DECIMAL(8,2),

a.
Click	here	to	view	code	image

SELECT	EMP_ID,	LAST_NAME,	FIRST_NAME,
							PHONE
FROM	EMPLOYEE_TBL
			WHERE	SUBSTRING(PHONE,	1,	3)	=	‘317’	OR
									SUBSTRING(PHONE,	1,	3)	=	‘812’	OR
									SUBSTRING(PHONE,	1,	3)	=	‘765’;

A.
Click	here	to	view	code	image

SELECT	EMP_ID,	LAST_NAME,	FIRST_NAME,
							PHONE
FROM	EMPLOYEE_TBL
WHERE	SUBSTRING(PHONE,	1,	3)	IN	(‘317’,	‘812’,	‘765’);

Typically,	it	is	better	to	convert	multiple	OR	conditions	to	an	IN	list.

b.
Click	here	to	view	code	image

SELECT	LAST_NAME,	FIRST_NAME
FROM	EMPLOYEE_TBL
WHERE	LAST_NAME	LIKE	‘%ALL%’;

A.
Click	here	to	view	code	image

SELECT	LAST_NAME,	FIRST_NAME
FROM	EMPLOYEE_TBL
WHERE	LAST_NAME	LIKE	‘WAL%’;

You	cannot	take	advantage	of	an	index	if	you	do	not	include	the	first	character	in	a
condition’s	value.

c.
Click	here	to	view	code	image

SELECT	E.EMP_ID,	E.LAST_NAME,	E.FIRST_NAME,
				EP.SALARY
FROM	EMPLOYEE_TBL	E,
EMPLOYEE_PAY_TBL	EP
WHERE	LAST_NAME	LIKE	‘S%’
AND	E.EMP_ID	=	EP.EMP_ID;

A.
Click	here	to	view	code	image

SELECT	E.EMP_ID,	E.LAST_NAME,	E.FIRST_NAME,
							EP.SALARY
FROM	EMPLOYEE_TBL	E,
EMPLOYEE_PAY_TBL	EP
WHERE	E.EMP_ID	=	EP.EMP_ID
AND	LAST_NAME	LIKE	‘S%’;

2.	Add	another	table	called	EMPLOYEE_PAYHIST_TBL	that	contains	a	large	amount
of	pay	history	data.	Use	the	table	that	follows	to	write	the	series	of	SQL	statements
to	address	the	following	problems.	Be	sure	you	take	steps	to	ensure	the	queries	you
write	perform	well.

Click	here	to	view	code	image
EMPLOYEE_PAYHIST_TBL
PAYHIST_ID								VARCHAR(9)					NOT	NULL					primary	key,
EMP_ID												VARCHAR(9)					NOT	NULL,
START_DATE								DATETIME							NOT	NULL,
END_DATE										DATETIME,
PAY_RATE										DECIMAL(4,2)			NOT	NULL,
SALARY												DECIMAL(8,2)			NOT	NULL,
BONUS													DECIMAL(8,2)			NOT	NULL,
CONSTRAINT	EMP_FK	FOREIGN	KEY	(EMP_ID)
REFERENCES	EMPLOYEE_TBL	(EMP_ID)

a.	Find	the	SUM	of	the	salaried	versus	nonsalaried	employees	by	the	year	in	which
their	pay	started.

A.
Click	here	to	view	code	image

SELECT	START_YEAR,SUM(SALARIED)	AS	SALARIED,SUM(HOURLY)	AS
HOURLY
				FROM
				(SELECT	YEAR(E.START_DATE)	AS	START_YEAR,COUNT(E.EMP_ID)				AS
SALARIED,0	AS	HOURLY
				FROM	EMPLOYEE_PAYHIST_TBL	E	INNER	JOIN
				(SELECT	MIN(START_DATE)	START_DATE,EMP_ID
					FROM	EMPLOYEE_PAYHIST_TBL
				GROUP	BY	EMP_ID)	F	ON	E.EMP_ID=F.EMP_ID	AND
E.START_DATE=F.START_DATE
				WHERE	E.SALARY	>	0.00
				GROUP	BY	YEAR(E.START_DATE)
				UNION
SELECT	YEAR(E.START_DATE)	AS	START_YEAR,0	AS	SALARIED,
				COUNT(E.EMP_ID)		AS	HOURLY
				FROM	EMPLOYEE_PAYHIST_TBL	E	INNER	JOIN
				(SELECT	MIN(START_DATE)	START_DATE,EMP_ID
				FROM	EMPLOYEE_PAYHIST_TBL
				GROUP	BY	EMP_ID)	F	ON	E.EMP_ID=F.EMP_ID	AND
E.START_DATE=F.START_DATE
				WHERE	E.PAY_RATE	>	0.00
				GROUP	BY	YEAR(E.START_DATE)
)	A
				GROUP	BY	START_YEAR
				ORDER	BY	START_YEAR

b.	Find	the	difference	in	the	yearly	pay	of	salaried	employees	versus	nonsalaried
employees	by	the	year	in	which	their	pay	started.	Consider	the	nonsalaried
employees	to	be	working	full	time	during	the	year	(PAY_RATE	*	52	*	40).

A.
Click	here	to	view	code	image

SELECT	START_YEAR,SALARIED	AS	SALARIED,HOURLY	AS	HOURLY,
				(SALARIED	-	HOURLY)	AS	PAY_DIFFERENCE
				FROM
				(SELECT	YEAR(E.START_DATE)	AS	START_YEAR,AVG(E.SALARY)	AS
SALARIED,
				0	AS	HOURLY
				FROM	EMPLOYEE_PAYHIST_TBL	E	INNER	JOIN
				(SELECT	MIN(START_DATE)	START_DATE,EMP_ID
				FROM	EMPLOYEE_PAYHIST_TBL
				GROUP	BY	EMP_ID)	F	ON	E.EMP_ID=F.EMP_ID	AND
E.START_DATE=F.START_DATE
				WHERE	E.SALARY	>	0.00
				GROUP	BY	YEAR(E.START_DATE)
				UNION
SELECT	YEAR(E.START_DATE)	AS	START_YEAR,0	AS	SALARIED,
				AVG(E.PAY_RATE	*	52	*	40)	AS	HOURLY
				FROM	EMPLOYEE_PAYHIST_TBL	E	INNER	JOIN
				(SELECT	MIN(START_DATE)	START_DATE,EMP_ID
					FROM	EMPLOYEE_PAYHIST_TBL
				GROUP	BY	EMP_ID)	F	ON	E.EMP_ID=F.EMP_ID	AND
E.START_DATE=F.START_DATE
				WHERE	E.PAY_RATE	>	0.00
				GROUP	BY	YEAR(E.START_DATE)
)	A
				GROUP	BY	START_YEAR
				ORDER	BY	START_YEAR

c.	Find	the	difference	in	what	employees	make	now	versus	what	they	made	when
they	started	with	the	company.	Again,	consider	the	nonsalaried	employees	to	be
full	time.	Also	consider	that	the	employees’	current	pay	is	reflected	in	the
EMPLOYEE_PAY_TBL	as	well	as	the	EMPLOYEE_PAYHIST_TBL.	In	the	pay
history	table,	the	current	pay	is	reflected	as	a	row	with	the	END_DATE	for	pay
equal	to	NULL.

A.
Click	here	to	view	code	image

SELECT	CURRENTPAY.EMP_ID,STARTING_ANNUAL_PAY,CURRENT_
ANNUAL_PAY,
CURRENT_ANNUAL_PAY	-	STARTING_ANNUAL_PAY	AS	PAY_DIFFERENCE
FROM
(SELECT	EMP_ID,(SALARY	+	(PAY_RATE	*	52	*	40))	AS
CURRENT_ANNUAL_PAY
		FROM	EMPLOYEE_PAYHIST_TBL
		WHERE	END_DATE	IS	NULL)	CURRENTPAY
INNER	JOIN
(SELECT	E.EMP_ID,(SALARY	+	(PAY_RATE	*	52	*	40))	AS
STARTING_ANNUAL_PAY
		FROM	EMPLOYEE_PAYHIST_TBL	E
		(SELECT	MIN(START_DATE)	START_DATE,EMP_ID
											FROM	EMPLOYEE_PAYHIST_TBL
											GROUP	BY	EMP_ID)	F	ON	E.EMP_ID=F.EMP_ID	AND
E.START_DATE=F.START_DATE
)	STARTINGPAY	ON
		CURRENTPAY.EMP_ID	=	STARTINGPAY.EMP_ID

Hour	18,	“Managing	Database	Users”

Quiz	Answers
1.	What	command	establishes	a	session?

A.	The	CONNECT	TO	statement	establishes	this.

2.	Which	option	drops	a	schema	that	still	contains	database	objects?

A.	The	CASCADE	option	allows	the	schema	to	be	dropped	if	there	are	still	objects
under	that	schema.

3.	Which	command	in	SQL	Server	creates	a	schema?

A.	The	CREATE	SCHEMA	command	creates	a	schema.

4.	Which	statement	removes	a	database	privilege?

A.	The	REVOKE	statement	removes	database	privileges.

5.	What	command	creates	a	grouping	or	collection	of	tables,	views,	and	privileges?

A.	The	CREATE	SCHEMA	statement.

6.	What	is	the	difference	in	SQL	Server	between	a	login	account	and	a	database	user
account?

A.	The	login	account	grants	access	to	the	SQL	Server	instance	to	log	in	and	access
resources.	The	database	user	account	is	what	gains	access	to	the	database	and	is
assigned	rights.

Exercise	Answers
1.	Describe	how	you	would	create	a	new	user	'John'	in	your	CanaryAirlines
database.

A.
USE	CANARYAIRLINES:
CREATE	USER	JOHN

2.	Explain	the	steps	you	would	take	to	grant	access	to	the	EMPLOYEE_TBL	to	your
new	user	'John'.

A.
Click	here	to	view	code	image

GRANT	SELECT	ON	TABLE	EMPLOYEES	TO	JOHN;

3.	Describe	how	you	would	assign	permissions	to	all	objects	within	the
CanaryAirlines	database	to	'John'.

A.
Click	here	to	view	code	image

GRANT	SELECT	ON	TABLE	*	TO	JOHN;

4.	Describe	how	you	would	revoke	the	previous	privileges	from	'John'	and	then
remove	his	account.

A.
DROP	USER	JOHN	CASCADE;

Hour	19,	“Managing	Database	Security”

Quiz	Answers
1.	What	option	must	a	user	have	to	grant	another	user	privileges	to	an	object	not
owned	by	the	user?

A.	GRANT	OPTION

2.	When	privileges	are	granted	to	PUBLIC,	do	all	database	users	acquire	the	privileges
or	only	specified	users?

A.	All	users	of	the	database	are	granted	the	privileges.

3.	What	privilege	is	required	to	look	at	data	in	a	specific	table?

A.	The	SELECT	privilege.

4.	What	type	of	privilege	is	SELECT?

A.	An	object-level	privilege.

5.	What	option	revokes	a	user’s	privilege	to	an	object	as	well	as	the	other	users	that
they	might	have	granted	privileges	to	by	use	of	the	GRANT	option?

A.	The	CASCADE	option	is	used	with	the	REVOKE	statement	to	remove	other	users’
access	that	was	granted	by	the	affected	user.

Exercise	Answers
1.	No	answer	required.

2.	No	answer	required.

3.	No	answer	required.

4.	No	answer	required.

Hour	20,	“Creating	and	Using	Views	and	Synonyms”

Quiz	Answers
1.	Can	you	delete	a	row	of	data	from	a	view	that	you	created	from	multiple	tables?

A.	No.	You	can	use	only	the	DELETE,	INSERT,	and	UPDATE	commands	on	views
you	create	from	a	single	table.

2.	When	creating	a	table,	the	owner	is	automatically	granted	the	appropriate	privileges
on	that	table.	Is	this	true	when	creating	a	view?

A.	Yes.	The	owner	of	a	view	is	automatically	granted	the	appropriate	privileges	on
the	view.

3.	Which	clause	orders	data	when	creating	a	view?

A.	The	GROUP	BY	clause	functions	in	a	view	much	as	the	ORDER	BY	clause	(or
GROUP	BY	clause)	does	in	a	regular	query.

4.	Do	Oracle	and	SQL	Server	handle	the	ability	to	order	a	view	in	the	same	way?

A.	No.	SQL	Server	does	not	permit	you	to	order	a	view	inside	of	the	view
definition.

5.	Which	option	can	you	use	when	creating	a	view	from	a	view	to	check	integrity
constraints?

A.	You	can	use	the	WITH	CHECK	OPTION.

6.	You	try	to	drop	a	view	and	receive	an	error	because	of	one	or	more	underlying
views.	What	must	you	do	to	drop	the	view?

A.	Re-execute	your	DROP	statement	with	the	CASCADE	option.	This	allows	the
DROP	statement	to	succeed	by	also	dropping	all	underlying	views.

Exercise	Answers
1.	Write	a	statement	to	create	a	view	based	on	the	total	contents	of	EMPLOYEES
table.

A.
CREATE	VIEW	EMP_VIEW	AS
SELECT	*	FROM	EMPLOYEES;

2.	Write	a	statement	that	creates	a	summarized	view	containing	the	average	pay	rate
and	average	salary	for	each	city	in	EMPLOYEES	table.

A.
Click	here	to	view	code	image

CREATE	VIEW	AVG_PAY_VIEW	AS
SELECT	E.CITY,	AVG(P.PAYRATE)	AS	AVG_PAYRATE,	AVG(P.SALARY)	AS
AVG_SALARY
FROM	EMPLOYEES	P
GROUP	BY	P.CITY;

3.	Create	another	view	for	the	same	summarized	data	except	use	the	view	you	created
in	Exercise	1	instead	of	the	base	EMPLOYEES	table.	Compare	the	two	results.

A.
Click	here	to	view	code	image

CREATE	VIEW	AVG_PAY_ALT_VIEW	AS
SELECT	E.CITY,	AVG_PAY_RATE,	AVG_SALARY)
FROM	EMP_VIEW	E;

4.	Use	the	view	in	Exercise	2	to	create	a	table	called
EMPLOYEE_PAY_SUMMARIZED.	Verify	that	the	view	and	the	table	contain	the

same	data.

A.
Click	here	to	view	code	image

SELECT	*	INTO	EMPLOYEE_PAY_SUMMARIZED	FROM	AVG_PAY_VIEW;

5.	Write	a	statement	to	create	a	synonym	for	your	new
EMPLOYEE_PAY_SUMMARIZED	table.

A.
Click	here	to	view	code	image

CREATE	SYNONYMN	SYN_EMP	FOR	EMPLOYEE_PAY_SUMMARIZED

6.	Write	two	queries,	one	that	uses	the	base	EMPLOYEE_PAY_SUMMARIZED	table
and	one	that	uses	your	synonym	that	compares	an	employee’s	salary	or	pay	rate	with
the	average	salary	for	the	city	they	are	in.

A.	Answers	will	vary.

7.	Write	a	statement	that	drops	the	table,	the	synonym,	and	the	three	views	that	you
created.

A.
Click	here	to	view	code	image

DROP	TABLE	EMPLOYEE_PAY_SUMMARIZED;
DROP	VIEW	SYN_EMP;
DROP	VIEW	EMP_VIEW;
DROP	VIEW	AVG_PAY_VIEW;
DROP	VIEW	AVG_PAY_ALT_VIEW;

Hour	21,	“Working	with	the	System	Catalog”

Quiz	Answers
1.	In	some	implementations,	what	is	the	system	catalog	also	known	as?

A.	The	system	catalog	is	also	known	as	the	data	dictionary.

2.	Can	a	regular	user	update	the	system	catalog?

A.	Not	directly;	however,	when	a	user	creates	an	object	such	as	a	table,	the	system
catalog	is	automatically	updated.

3.	Which	Microsoft	SQL	Server	system	table	retrieves	information	about	views	that
exist	in	the	database?

A.	SYSVIEWS	is	used.

4.	Who	owns	the	system	catalog?

A.	The	owner	of	the	system	catalog	is	often	a	privileged	database	user	account
called	SYS	or	SYSTEM.	The	owner	of	the	database	can	also	own	the	system
catalog,	but	a	particular	schema	in	the	database	does	not	ordinarily	own	it.

5.	What	is	the	difference	between	the	Oracle	system	objects	ALL_TABLES	and

DBA_TABLES?

A.	ALL_TABLES	shows	all	tables	that	are	accessible	by	a	particular	user,	whereas
DBA_TABLES	shows	all	tables	that	exist	in	the	database.

6.	Who	makes	modifications	to	the	system	tables?

A.	The	database	server	makes	these	modifications.

Exercise	Answers
1.	No	answer	required.

2.	No	answer	required.

3.	No	answer	required.

Hour	22,	“Advanced	SQL	Topics”

Quiz	Answers
1.	Can	a	trigger	be	altered?

A.	No,	the	trigger	must	be	replaced	or	re-created.

2.	When	a	cursor	is	closed,	can	you	reuse	the	name?

A.	This	is	implementation-specific.	In	some	implementations,	the	closing	of	the
cursor	enables	you	to	reuse	the	name	and	even	free	the	memory,	whereas	for
other	implementations	you	must	use	the	DEALLOCATE	statement	before	you	can
reuse	the	name.

3.	Which	command	retrieves	the	results	after	a	cursor	has	been	opened?

A.	The	FETCH	command	does	this.

4.	Are	triggers	executed	before	or	after	an	INSERT,	DELETE,	or	UPDATE	statement?

A.	Triggers	can	be	executed	before	or	after	an	INSERT,	DELETE,	or	UPDATE
statement.	Many	different	types	of	triggers	can	be	created.

5.	Which	MySQL	function	retrieves	information	from	an	XML	fragment?

A.	EXTRACTVALUE	is	used.

6.	Why	does	Oracle	not	support	the	DEALLOCATE	syntax	for	cursors?

A.	It	does	not	support	the	statement	because	they	automatically	deallocate	the
cursor	resources	when	the	cursor	is	closed.

7.	Why	is	a	cursor	not	considered	a	set-based	operation?

A.	Cursors	are	not	considered	set-based	operations	because	they	operate	on	only
one	row	at	a	time	by	fetching	a	row	from	memory	and	performing	some	action
with	it.

Exercise	Answers
1.	No	answer	required.

2.	Write	a	SELECT	statement	that	generates	the	SQL	code	to	count	all	rows	in	each	of
your	tables.	(Hint:	It	is	similar	to	Exercise	1.)

A.
Click	here	to	view	code	image

SELECT	CONCAT(‘SELECT	COUNT(*)	FROM	‘,TABLE_NAME,’;’)	FROM	TABLES;

3.	Write	a	series	of	SQL	commands	to	create	a	cursor	that	prints	each	customer	name
and	the	customer’s	total	sales.	Ensure	that	the	cursor	is	properly	closed	and
deallocated	based	on	which	implementation	you	are	using.

A.	An	example	using	SQL	Server	might	look	similar	to	this:
Click	here	to	view	code	image

BEGIN
					DECLARE	@custname	VARCHAR(30);
					DECLARE	@purchases	decimal(6,2);
					DECLARE	customercursor	CURSOR	FOR	SELECT
					C.CUST_NAME,SUM(P.COST*O.QTY)	as	SALES
					FROM	CUSTOMER_TBL	C
					INNER	JOIN	ORDERS_TBL	O	ON	C.CUST_ID=O.CUST_ID
					INNER	JOIN	PRODUCTS_TBL	P	ON	O.PROD_ID=P.PROD_ID
					GROUP	BY	C.CUST_NAME;
					OPEN	customercursor;
					FETCH	NEXT	FROM	customercursor	INTO	@custname,@purchases
					WHILE	(@@FETCH_STATUS<>-1)
											BEGIN
															IF	(@@FETCH_STATUS<>-2)
															BEGIN
																				PRINT	@custname	+	‘:	$’	+	CAST(@purchases	AS
VARCHAR(20))
															END
					FETCH	NEXT	FROM	customercursor	INTO	@custname,@purchases
					END
					CLOSE	customercursor
					DEALLOCATE	customercursor
					END;

Hour	23,	“Extending	SQL	to	the	Enterprise,	the	Internet,	and	the
Intranet”

Quiz	Answers
1.	Can	a	database	on	a	server	be	accessed	from	another	server?

A.	Yes,	by	using	a	middleware	product.	This	is	called	accessing	a	remote	database.

2.	What	can	a	company	use	to	disseminate	information	to	its	own	employees?

A.	An	intranet.

3.	What	are	products	that	allow	connections	to	databases	called?

A.	Middleware.

4.	Can	SQL	be	embedded	in	Internet	programming	languages?

A.	Yes.	SQL	can	be	embedded	in	Internet	programming	languages,	such	as	Java.

5.	How	is	a	remote	database	accessed	through	a	web	application?

A.	Via	a	web	server.

Exercise	Answers
1.	Answers	will	vary.

2.	No	answer	required.

Hour	24,	“Extensions	to	Standard	SQL”

Quiz	Answers
1.	Is	SQL	a	procedural	or	nonprocedural	language?

A.	SQL	is	nonprocedural,	meaning	that	the	database	decides	how	to	execute	the
SQL	statement.	The	extensions	discussed	in	this	hour	were	procedural.

2.	What	are	the	three	basic	operations	of	a	cursor,	outside	of	declaring	the	cursor?

A.	OPEN,	FETCH,	and	CLOSE.

3.	Procedural	or	nonprocedural:	With	which	does	the	database	engine	decide	how	to
evaluate	and	execute	SQL	statements?

A.	Nonprocedural.

Exercise	Answers
1.	No	answer	required.

Appendix	D.	Bonus	Exercises

The	exercises	in	this	appendix	are	bonus	exercises	that	are	specific	to	SQL	Server.	This
appendix	provides	an	explanation	or	question	and	then	provides	sample	Microsoft	SQL
Server-based	SQL	code	to	execute.	Remember	that	the	SQL	code	can	vary	from
implementation	to	implementation;	therefore,	some	of	these	statements	need	to	be
adjusted	depending	on	the	system	you	work	on.	Study	the	question,	code,	and	results
carefully	to	improve	your	knowledge	of	SQL.

1.	Determine	the	aircraft	that	is	used	the	most.
Click	here	to	view	code	image

SELECT	TOP	1	A.AIRCRAFTTYPE,	COUNT(*)	AS	TIMESUSED
FROM	AIRCRAFT	A
INNER	JOIN	AIRCRAFTFLEET	AF	ON	A.AIRCRAFTCODE	=	AF.AIRCRAFTCODE
INNER	JOIN	FLIGHTS	F	ON	AF.AIRCRAFTFLEETID	=	F.AIRCRAFTFLEETID
GROUP	BY	A.AIRCRAFTTYPE
ORDER	BY	2	DESC;

2.	Determine	the	average	length	of	flight	for	each	type	of	aircraft.
Click	here	to	view	code	image

SELECT	A.AIRCRAFTTYPE,	AVG(F.FLIGHTDURATION)	AS	AVG_DURATION
FROM	AIRCRAFT	A
INNER	JOIN	AIRCRAFTFLEET	AF	ON	A.AIRCRAFTCODE	=	AF.AIRCRAFTCODE
INNER	JOIN	FLIGHTS	F	ON	AF.AIRCRAFTFLEETID	=	F.AIRCRAFTFLEETID
GROUP	BY	A.AIRCRAFTTYPE;

3.	Return	a	list	of	the	top	3	countries	in	order	where	passengers	are	from.
Click	here	to	view	code	image

SELECT	TOP	3	COUNTRYCODE,COUNT(*)	AS	NUM_PASSENGERS
FROM	PASSENGERS
GROUP	BY	COUNTRYCODE
ORDER	BY	2	DESC;

4.	Determine	the	10	longest	routes	the	airline	takes.	Include	the	source	and	destination
airports	for	each	of	the	routes.

Click	here	to	view	code	image
SELECT	TOP	10	R.ROUTECODE,	S.AIRPORTNAME	AS	SOURCE_AIRPORT
,	D.AIRPORTNAME	AS	DEST_AIRPORT,	R.DISTANCE
FROM	ROUTES	R
INNER	JOIN	AIRPORTS	S	ON	R.SOURCEAIRPORTID	=	S.AIRPORTID
INNER	JOIN	AIRPORTS	D	ON	R.DESTINATIONAIRPORTID	=	D.AIRPORTID
ORDER	BY	DISTANCE	DESC;

5.	Determine	the	10	most	expensive	routes	for	the	airline	based	on	fuel	cost	per	minute
*	number	of	minutes	flown.

Click	here	to	view	code	image
SELECT	TOP	10	R.ROUTECODE,	S.AIRPORTNAME	AS	SOURCE_AIRPORT
,	D.AIRPORTNAME	AS	DEST_AIRPORT,	R.TRAVELTIME*R.FUELCOSTPERMINUTE
FROM	ROUTES	R
INNER	JOIN	AIRPORTS	S	ON	R.SOURCEAIRPORTID	=	S.AIRPORTID
INNER	JOIN	AIRPORTS	D	ON	R.DESTINATIONAIRPORTID	=	D.AIRPORTID
ORDER	BY	4	DESC;

6.	Determine	if	any	of	the	10	routes	you	found	in	Exercise	4	are	also	ones	found	in
Exercise	5.

Click	here	to	view	code	image
SELECT	A.*
FROM
(
SELECT	TOP	10	R.ROUTECODE,	S.AIRPORTNAME	AS	SOURCE_AIRPORT
,	D.AIRPORTNAME	AS	DEST_AIRPORT,	R.TRAVELTIME*R.FUELCOSTPERMINUTE	AS
TOTALCOST
FROM	ROUTES	R
INNER	JOIN	AIRPORTS	S	ON	R.SOURCEAIRPORTID	=	S.AIRPORTID
INNER	JOIN	AIRPORTS	D	ON	R.DESTINATIONAIRPORTID	=	D.AIRPORTID
ORDER	BY	4	DESC
)	A
INNER	JOIN	(
SELECT	TOP	10	R.ROUTECODE,	S.AIRPORTNAME	AS	SOURCE_AIRPORT
,	D.AIRPORTNAME	AS	DEST_AIRPORT,	R.DISTANCE
FROM	ROUTES	R
INNER	JOIN	AIRPORTS	S	ON	R.SOURCEAIRPORTID	=	S.AIRPORTID
INNER	JOIN	AIRPORTS	D	ON	R.DESTINATIONAIRPORTID	=	D.AIRPORTID
ORDER	BY	DISTANCE	DESC)	B	ON	A.ROUTECODE=B.ROUTECODE;

7.	Determine	the	top	10	passengers	who	have	flown	the	longest	number	of	miles	with
the	airline.

Click	here	to	view	code	image
SELECT	TOP	10	P.PASSENGERID,	P.FIRSTNAME,	P.LASTNAME,
P.BIRTHDATE,
SUM(R.DISTANCE	+	ISNULL(R2.DISTANCE,	0))	AS	TOTAL_DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
LEFT	OUTER	JOIN	FLIGHTS	F2	ON	T.RETURNFLIGHTID	=	F2.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
LEFT	OUTER	JOIN	ROUTES	R2	ON	F2.ROUTEID	=	R2.ROUTEID
GROUP	BY		P.PASSENGERID,	P.FIRSTNAME,	P.LASTNAME,
P.BIRTHDATE
ORDER	BY	5	DESC;

8.	If	frequent	flyer	miles	are	given	as	1	per	every	100	miles,	determine	what	routes	the
#1	frequent	flyer	from	Exercise	7	might	be	able	to	take,	if	any.

Click	here	to	view	code	image
SELECT	ROUTEID,	ROUTECODE
FROM	ROUTES
WHERE	DISTANCE<=
(
SELECT
SUM(R.DISTANCE	+	ISNULL(R2.DISTANCE,	0))/100	AS	FLYER_MILES
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
LEFT	OUTER	JOIN	FLIGHTS	F2	ON	T.RETURNFLIGHTID	=	F2.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
LEFT	OUTER	JOIN	ROUTES	R2	ON	F2.ROUTEID	=	R2.ROUTEID
WHERE	P.PASSENGERID=116265
);

9.	For	the	#1	frequent	flyer,	determine	the	number	of	miles	he	logs	per	month.

Click	here	to	view	code	image
SELECT	A.REPORT_MONTH,	SUM(DISTANCE)	AS	TOTAL_DISTANCE
FROM
(
SELECT
MONTH(LEAVING)	AS	REPORT_MONTH,
SUM(R.DISTANCE)	AS	DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
WHERE	P.PASSENGERID=116265
GROUP	BY	MONTH(LEAVING)
UNION
SELECT
MONTH(RETURNING)	AS	REPORT_MONTH,
SUM(R.DISTANCE)	AS	DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.RETURNFLIGHTID	=	F.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
WHERE	P.PASSENGERID=116265
GROUP	BY	MONTH(RETURNING)
)	A
GROUP	BY	REPORT_MONTH;

10.	Using	the	query	from	Exercise	9	as	your	basis,	get	the	difference	between	the
current	month	and	the	previous	month	for	the	top	10	frequent	flyers.

Click	here	to	view	code	image
SELECT	DISTINCT
A.REPORT_MONTH,
SUM(DISTANCE)	OVER	(PARTITION	BY	REPORT_MONTH)	AS	TOTAL_DISTANCE,
SUM(DISTANCE)	OVER	(PARTITION	BY	REPORT_MONTH)	-
LAG(DISTANCE,1)	OVER	(ORDER	BY	REPORT_MONTH)	AS	DIFF
FROM
(
SELECT
P.PASSENGERID,
MONTH(LEAVING)	AS	REPORT_MONTH,
SUM(R.DISTANCE)	AS	DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
GROUP	BY	P.PASSENGERID,MONTH(LEAVING)
UNION
SELECT
P.PASSENGERID,
MONTH(RETURNING)	AS	REPORT_MONTH,
SUM(R.DISTANCE)	AS	DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.RETURNFLIGHTID	=	F.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
GROUP	BY	P.PASSENGERID,MONTH(RETURNING)
)	A
INNER	JOIN	(
SELECT	TOP	10	P.PASSENGERID,
SUM(R.DISTANCE	+	ISNULL(R2.DISTANCE,	0))	AS	TOTAL_DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID

INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
LEFT	OUTER	JOIN	FLIGHTS	F2	ON	T.RETURNFLIGHTID	=	F2.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
LEFT	OUTER	JOIN	ROUTES	R2	ON	F2.ROUTEID	=	R2.ROUTEID
GROUP	BY		P.PASSENGERID
ORDER	BY	2	DESC
)	B
ON	A.PASSENGERID	=	B.PASSENGERID;

11.	Update	your	query	to	rank	the	months	of	travel	by	our	frequent	flyer	by	the	increase
in	miles	traveled	from	the	previous	months.

Click	here	to	view	code	image
SELECT	REPORT_MONTH,	TOTAL_DISTANCE,	DIFF,
	DENSE_RANK()	OVER	(ORDER	BY	DIFF	DESC)	AS	DIFF_RANK
	FROM
(
SELECT	DISTINCT
A.REPORT_MONTH,
SUM(DISTANCE)	OVER	(PARTITION	BY	REPORT_MONTH)	AS	TOTAL_DISTANCE,
SUM(DISTANCE)	OVER	(PARTITION	BY	REPORT_MONTH)	-
LAG(DISTANCE,1)	OVER	(ORDER	BY	REPORT_MONTH)	AS	DIFF
FROM
(
SELECT
P.PASSENGERID,
MONTH(LEAVING)	AS	REPORT_MONTH,
SUM(R.DISTANCE)	AS	DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
GROUP	BY	P.PASSENGERID,MONTH(LEAVING)
UNION
SELECT
P.PASSENGERID,
MONTH(RETURNING)	AS	REPORT_MONTH,
SUM(R.DISTANCE)	AS	DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.RETURNFLIGHTID	=	F.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
GROUP	BY	P.PASSENGERID,MONTH(RETURNING)
)	A
INNER	JOIN	(
SELECT	TOP	10	P.PASSENGERID,
SUM(R.DISTANCE	+	ISNULL(R2.DISTANCE,	0))	AS	TOTAL_DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
LEFT	OUTER	JOIN	FLIGHTS	F2	ON	T.RETURNFLIGHTID	=	F2.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
LEFT	OUTER	JOIN	ROUTES	R2	ON	F2.ROUTEID	=	R2.ROUTEID
GROUP	BY		P.PASSENGERID
ORDER	BY	2	DESC
)	B
ON	A.PASSENGERID	=	B.PASSENGERID
)	C
ORDER	BY	REPORT_MONTH;

12.	Update	your	query	from	Exercise	11	to	add	a	running	sum	column	for	the	number
of	miles	flown.

Click	here	to	view	code	image
SELECT	REPORT_MONTH,	TOTAL_DISTANCE,	DIFF,
	DENSE_RANK()	OVER	(ORDER	BY	DIFF	DESC)	AS	DIFF_RANK,
	SUM(TOTAL_DISTANCE)	OVER	(ORDER	BY	REPORT_MONTH
ROWS	BETWEEN	UNBOUNDED	PRECEDING	AND	CURRENT	ROW)	AS	RUNNING_TOTAL
	FROM
(
SELECT	DISTINCT
A.REPORT_MONTH,
SUM(DISTANCE)	OVER	(PARTITION	BY	REPORT_MONTH)	AS	TOTAL_DISTANCE,
SUM(DISTANCE)	OVER	(PARTITION	BY	REPORT_MONTH)	-
LAG(DISTANCE,1)	OVER	(ORDER	BY	REPORT_MONTH)	AS	DIFF
FROM
(
SELECT
P.PASSENGERID,
MONTH(LEAVING)	AS	REPORT_MONTH,
SUM(R.DISTANCE)	AS	DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
GROUP	BY	P.PASSENGERID,MONTH(LEAVING)
UNION
SELECT
P.PASSENGERID,
MONTH(RETURNING)	AS	REPORT_MONTH,
SUM(R.DISTANCE)	AS	DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.RETURNFLIGHTID	=	F.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
GROUP	BY	P.PASSENGERID,MONTH(RETURNING)
)	A
INNER	JOIN	(
SELECT	TOP	10	P.PASSENGERID,
SUM(R.DISTANCE	+	ISNULL(R2.DISTANCE,	0))	AS	TOTAL_DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
LEFT	OUTER	JOIN	FLIGHTS	F2	ON	T.RETURNFLIGHTID	=	F2.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
LEFT	OUTER	JOIN	ROUTES	R2	ON	F2.ROUTEID	=	R2.ROUTEID
GROUP	BY		P.PASSENGERID
ORDER	BY	2	DESC
)	B
ON	A.PASSENGERID	=	B.PASSENGERID
)	C
ORDER	BY	REPORT_MONTH;

13.	Determine	which	airports	the	top	10	frequent	flyers	are	most	likely	to	travel	from.
Get	the	top	airport	for	each	flyer.

Click	here	to	view	code	image
SELECT	DISTINCT	A.AIRPORTID,	AIR.AIRPORTNAME
FROM
(
SELECT	*	FROM
					(
								SELECT	PASSENGERID,AIRPORTID,
								RANK()	OVER	(ORDER	BY	NUM_FLIGHTS	DESC)	AS	AIRPORT_RANK
								FROM

													(
														SELECT	T.PASSENGERID,
														R.SOURCEAIRPORTID	AS	AIRPORTID,
														COUNT(*)	AS	NUM_FLIGHTS
														FROM	TRIPS	T
														INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
														INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
														GROUP	BY	T.PASSENGERID,	R.SOURCEAIRPORTID
)	D
)	E	WHERE	AIRPORT_RANK=1
)	A
INNER	JOIN	(
SELECT	TOP	10	P.PASSENGERID,
SUM(R.DISTANCE	+	ISNULL(R2.DISTANCE,	0))	AS	TOTAL_DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
LEFT	OUTER	JOIN	FLIGHTS	F2	ON	T.RETURNFLIGHTID	=	F2.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
LEFT	OUTER	JOIN	ROUTES	R2	ON	F2.ROUTEID	=	R2.ROUTEID
GROUP	BY		P.PASSENGERID
ORDER	BY	2	DESC
)	B
ON	A.PASSENGERID	=	B.PASSENGERID
INNER	JOIN	AIRPORTS	AIR	ON	A.AIRPORTID	=	AIR.AIRPORTID;

14.	Determine	which	airports	are	the	most	likely	destinations	for	the	top	10	frequent
flyers.

Click	here	to	view	code	image
SELECT	DISTINCT	A.AIRPORTID,	AIR.AIRPORTNAME
FROM
(
			SELECT	*	FROM
					(
								SELECT	PASSENGERID,AIRPORTID,
								RANK()	OVER	(ORDER	BY	NUM_FLIGHTS	DESC)	AS	AIRPORT_RANK
								FROM
								(
								SELECT	T.PASSENGERID,
								R.DESTINATIONAIRPORTID	AS	AIRPORTID,
								COUNT(*)	AS	NUM_FLIGHTS
								FROM	TRIPS	T
								INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
								INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
								GROUP	BY	T.PASSENGERID,	R.DESTINATIONAIRPORTID
)	D
)	E	WHERE	AIRPORT_RANK=1
)	A
INNER	JOIN	(
SELECT	TOP	10	P.PASSENGERID,
SUM(R.DISTANCE	+	ISNULL(R2.DISTANCE,	0))	AS	TOTAL_DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
LEFT	OUTER	JOIN	FLIGHTS	F2	ON	T.RETURNFLIGHTID	=	F2.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
LEFT	OUTER	JOIN	ROUTES	R2	ON	F2.ROUTEID	=	R2.ROUTEID
GROUP	BY		P.PASSENGERID
ORDER	BY	2	DESC
)	B
ON	A.PASSENGERID	=	B.PASSENGERID

INNER	JOIN	AIRPORTS	AIR	ON	A.AIRPORTID	=	AIR.AIRPORTID;

15.	Combine	the	results	from	Exercise	13	and	Exercise	14	removing	duplicates.
Click	here	to	view	code	image

SELECT	DISTINCT	A.AIRPORTID,	AIR.AIRPORTNAME
FROM
(
			SELECT	*	FROM
					(
								SELECT	PASSENGERID,AIRPORTID,
								RANK()	OVER	(ORDER	BY	NUM_FLIGHTS	DESC)	AS	AIRPORT_RANK
								FROM
								(
								SELECT	T.PASSENGERID,
								R.SOURCEAIRPORTID	AS	AIRPORTID,
								COUNT(*)	AS	NUM_FLIGHTS
								FROM	TRIPS	T
								INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
								INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
								GROUP	BY	T.PASSENGERID,	R.SOURCEAIRPORTID
)	D
)	E	WHERE	AIRPORT_RANK=1
)	A
INNER	JOIN	(
SELECT	TOP	10	P.PASSENGERID,
SUM(R.DISTANCE	+	ISNULL(R2.DISTANCE,	0))	AS	TOTAL_DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
LEFT	OUTER	JOIN	FLIGHTS	F2	ON	T.RETURNFLIGHTID	=	F2.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
LEFT	OUTER	JOIN	ROUTES	R2	ON	F2.ROUTEID	=	R2.ROUTEID
GROUP	BY		P.PASSENGERID
ORDER	BY	2	DESC
)	B
ON	A.PASSENGERID	=	B.PASSENGERID
INNER	JOIN	AIRPORTS	AIR	ON	A.AIRPORTID	=	AIR.AIRPORTID
UNION
SELECT	DISTINCT	A.AIRPORTID,	AIR.AIRPORTNAME
FROM
(
			SELECT	*	FROM
					(
								SELECT	PASSENGERID,AIRPORTID,
								RANK()	OVER	(ORDER	BY	NUM_FLIGHTS	DESC)	AS	AIRPORT_RANK
								FROM
								(
								SELECT	T.PASSENGERID,
								R.DESTINATIONAIRPORTID	AS	AIRPORTID,
								COUNT(*)	AS	NUM_FLIGHTS
								FROM	TRIPS	T
								INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
								INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
								GROUP	BY	T.PASSENGERID,	R.DESTINATIONAIRPORTID
)	D
)	E	WHERE	AIRPORT_RANK=1
)	A
INNER	JOIN	(
SELECT	TOP	10	P.PASSENGERID,
SUM(R.DISTANCE	+	ISNULL(R2.DISTANCE,	0))	AS	TOTAL_DISTANCE
FROM	PASSENGERS	P

INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
LEFT	OUTER	JOIN	FLIGHTS	F2	ON	T.RETURNFLIGHTID	=	F2.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
LEFT	OUTER	JOIN	ROUTES	R2	ON	F2.ROUTEID	=	R2.ROUTEID
GROUP	BY		P.PASSENGERID
ORDER	BY	2	DESC
)	B
ON	A.PASSENGERID	=	B.PASSENGERID
INNER	JOIN	AIRPORTS	AIR	ON	A.AIRPORTID	=	AIR.AIRPORTID;

16.	Create	a	view	called	TOP_AIRPORTS	based	on	the	previous	query.
Click	here	to	view	code	image

CREATE	VIEW	TOP_AIRPORTS	AS
SELECT	DISTINCT	A.AIRPORTID,	AIR.AIRPORTNAME
FROM
(
			SELECT	*	FROM
					(
								SELECT	PASSENGERID,AIRPORTID,
								RANK()	OVER	(ORDER	BY	NUM_FLIGHTS	DESC)	AS	AIRPORT_RANK
								FROM
								(
								SELECT	T.PASSENGERID,
								R.SOURCEAIRPORTID	AS	AIRPORTID,
								COUNT(*)	AS	NUM_FLIGHTS
								FROM	TRIPS	T
								INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
								INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
								GROUP	BY	T.PASSENGERID,	R.SOURCEAIRPORTID
)	D
)	E	WHERE	AIRPORT_RANK=1
)	A
INNER	JOIN	(
SELECT	TOP	10	P.PASSENGERID,
SUM(R.DISTANCE	+	ISNULL(R2.DISTANCE,	0))	AS	TOTAL_DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
LEFT	OUTER	JOIN	FLIGHTS	F2	ON	T.RETURNFLIGHTID	=	F2.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
LEFT	OUTER	JOIN	ROUTES	R2	ON	F2.ROUTEID	=	R2.ROUTEID
GROUP	BY		P.PASSENGERID
ORDER	BY	2	DESC
)	B
ON	A.PASSENGERID	=	B.PASSENGERID
INNER	JOIN	AIRPORTS	AIR	ON	A.AIRPORTID	=	AIR.AIRPORTID
UNION
SELECT	DISTINCT	A.AIRPORTID,	AIR.AIRPORTNAME
FROM
(
			SELECT	*	FROM
					(
								SELECT	PASSENGERID,AIRPORTID,
								RANK()	OVER	(ORDER	BY	NUM_FLIGHTS	DESC)	AS	AIRPORT_RANK
								FROM
								(
								SELECT	T.PASSENGERID,
								R.DESTINATIONAIRPORTID	AS	AIRPORTID,
								COUNT(*)	AS	NUM_FLIGHTS
								FROM	TRIPS	T

								INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
								INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
								GROUP	BY	T.PASSENGERID,	R.DESTINATIONAIRPORTID
)	D
)	E	WHERE	AIRPORT_RANK=1
)	A
INNER	JOIN	(
SELECT	TOP	10	P.PASSENGERID,
SUM(R.DISTANCE	+	ISNULL(R2.DISTANCE,	0))	AS	TOTAL_DISTANCE
FROM	PASSENGERS	P
INNER	JOIN	TRIPS	T	ON	P.PASSENGERID	=	T.PASSENGERID
INNER	JOIN	FLIGHTS	F	ON	T.SOURCEFLIGHTID	=	F.FLIGHTID
LEFT	OUTER	JOIN	FLIGHTS	F2	ON	T.RETURNFLIGHTID	=	F2.FLIGHTID
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
LEFT	OUTER	JOIN	ROUTES	R2	ON	F2.ROUTEID	=	R2.ROUTEID
GROUP	BY		P.PASSENGERID
ORDER	BY	2	DESC
)	B
ON	A.PASSENGERID	=	B.PASSENGERID
INNER	JOIN	AIRPORTS	AIR	ON	A.AIRPORTID	=	AIR.AIRPORTID;

17.	Create	a	report	for	a	salary	increase	for	these	employees	that	work	at	these	airports.
Ticket	agents	and	security	officers	will	receive	a	10%	pay	increase.	Baggage
handlers	and	ground	operations	will	receive	a	15%	increase.	Have	your	query	return
both	the	previous	salary	and	hourly	wage	as	well	as	the	new	ones.

Click	here	to	view	code	image
SELECT
E.EMPLOYEEID,	E.LASTNAME,	E.FIRSTNAME,
E.PAYRATE,
CASE	WHEN	E.POSITION	IN	(‘Ticket	Agent’,‘Security	Officer’)	THEN
E.PAYRATE*1.1
					WHEN	E.POSITION	IN	(‘Ground	Operations’,‘Baggage	Handler’)	THEN
E.PAYRATE*1.15
				ELSE	PAYRATE	END	AS	NEW_PAYRATE,
				E.SALARY,
CASE	WHEN	E.POSITION	IN	(‘Ticket	Agent’,‘Security	Officer’)	THEN
E.SALARY*1.1
					WHEN	E.POSITION	IN	(‘Ground	Operations’,‘Baggage	Handler’)	THEN
E.SALARY*1.15
				ELSE	SALARY	END	AS	NEW_SALARY
	FROM	EMPLOYEES	E
INNER	JOIN	TOP_AIRPORTS	TA	ON	E.AIRPORTID	=	TA.AIRPORTID;

18.	Determine	if	the	pay	increase	figured	in	Exercise	17	will	bring	those	people	to
within	the	top	10%	pay	range	for	their	respective	position	company-wide	for	either
salary	or	hourly	amount.

Click	here	to	view	code	image
SELECT	A.EMPLOYEEID,	A.LASTNAME,	A.FIRSTNAME,
A.PAYRATE,	A.NEW_PAYRATE,	A.SALARY,	A.NEW_SALARY,
CASE	WHEN	A.NEW_PAYRATE	IS	NOT	NULL	AND	A.NEW_PAYRATE>=TP.TOP10_PAYRATE
THEN	‘YES’
					WHEN	A.NEW_SALARY	IS	NOT	NULL	AND	A.NEW_SALARY>=TP.TOP10_SALARY	THEN
‘YES’
					ELSE	‘NO’
END	AS	IS_TOP10PERCENT
FROM
(
SELECT
E.EMPLOYEEID,	E.LASTNAME,	E.FIRSTNAME,

E.PAYRATE,E.POSITION,
CASE	WHEN	E.POSITION	IN	(‘Ticket	Agent’,‘Security	Officer’)	THEN
E.PAYRATE*1.1
					WHEN	E.POSITION	IN	(‘Ground	Operations’,‘Baggage	Handler’)	THEN
E.PAYRATE*1.15
				ELSE	PAYRATE	END	AS	NEW_PAYRATE,
				E.SALARY,
CASE	WHEN	E.POSITION	IN	(‘Ticket	Agent’,‘Security	Officer’)	THEN
E.SALARY*1.1
					WHEN	E.POSITION	IN	(‘Ground	Operations’,‘Baggage	Handler’)	THEN
E.SALARY*1.15
				ELSE	SALARY	END	AS	NEW_SALARY
	FROM	EMPLOYEES	E
INNER	JOIN	TOP_AIRPORTS	TA	ON	E.AIRPORTID	=	TA.AIRPORTID
)	A
INNER	JOIN
(
SELECT	MAX(PAYRATE)*.9	AS	TOP10_PAYRATE,MAX(SALARY)*.9	AS	TOP10_SALARY,
POSITION
FROM	EMPLOYEES
GROUP	BY	POSITION
)	TP	ON	A.POSITION	=	TP.POSITION;

19.	Determine	the	total	cost	of	operating	all	the	flights	in	the	database.	Find	out	the
timespan	this	is	valid	for.

Click	here	to	view	code	image
SELECT	MIN(F.FLIGHTSTART)	AS	MIN_START,	MAX(F.FLIGHTEND)	AS	MAX_END,
SUM(R.TRAVELTIME	*	R.FUELCOSTPERMINUTE)	AS	TOTAL_COST
FROM	FLIGHTS	F
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID;

20.	Determine	the	yearly	employee	costs	for	the	entire	company.	Assume	that	hourly
workers	are	kept	at	a	40-hour	work	week	and	operations	are	maintained	for	52
weeks	a	year.

Click	here	to	view	code	image
SELECT
SUM(PAYRATE*52*40)	+	SUM(SALARY)	AS	TOTAL_HRCOST
FROM	EMPLOYEES	E;

21.	Determine	what	the	total	cost	of	operations	are	for	the	entire	company.	This	would
include	flight	and	employee	costs.	Pay	special	attention	to	the	time	period	that	you
determined	for	Exercise	19.

Click	here	to	view	code	image
SELECT	A.TOTAL_AIRCRAFTCOST	+	B.TOTAL_HRCOST	AS	TOTAL_OPERATINGCOST
FROM
(
SELECT
—	Operating	for	4	months.	So	a	year	would	be	*3
SUM(R.TRAVELTIME	*	R.FUELCOSTPERMINUTE)*3	AS	TOTAL_AIRCRAFTCOST
FROM	FLIGHTS	F
INNER	JOIN	ROUTES	R	ON	F.ROUTEID	=	R.ROUTEID
)	A,
(
SELECT
SUM(PAYRATE*52*40)	+	SUM(SALARY)	AS	TOTAL_HRCOST
FROM	EMPLOYEES	E
)	B

Appendix	E.	Glossary

alias	Another	name	or	term	for	a	table	or	column.

ANSI	American	National	Standards	Institute.	This	institute	is	responsible	for	issuing
standards	for	a	variety	of	topics.	This	is	where	the	SQL	standard	is	published.

application	A	set	of	menus,	forms,	reports,	and	code	that	performs	a	business	function
and	typically	uses	a	database.

buffer	An	area	in	memory	for	editing	or	execution	of	SQL.

Cartesian	product	The	result	of	not	joining	tables	in	the	WHERE	clause	of	a	SQL
statement.	When	tables	in	a	query	are	not	joined,	every	row	in	one	table	is	paired	with
every	row	in	all	other	tables.

client	The	client	is	typically	a	PC,	but	it	can	be	a	server	that	is	dependent	on	another
computer	for	data,	services,	or	processing.	A	client	application	enables	a	client	machine	to
communicate	with	a	server.

column	A	part	of	a	table	that	has	a	name	and	a	specific	data	type.

COMMIT	A	clause	that	makes	changes	to	data	permanent.

composite	index	An	index	that	is	composed	of	two	or	more	columns.

condition	Search	criteria	in	a	query’s	WHERE	clause	that	evaluates	to	TRUE	or	FALSE.

constant	A	value	that	does	not	change.

constraint	Restrictions	on	data	that	are	enforced	at	the	data	level.

cursor	A	work	area	in	memory	that	uses	SQL	statements	to	typically	perform	row-based
operations	against	a	set	of	data.

data	dictionary	Another	name	for	the	system	catalog.	See	system	catalog.

data	type	Defines	data	as	a	type,	such	as	number,	date,	or	character.

database	A	collection	of	data	that	is	typically	organized	into	sets	of	tables.

DBA	Database	administrator.	An	individual	who	manages	a	database.

DDL	Data	Definition	Language.	The	part	of	the	SQL	syntax	that	specifically	deals	with
defining	database	objects	such	as	tables,	views,	and	functions.

default	A	value	used	when	no	specification	has	been	made.

distinct	Unique;	used	in	the	SELECT	clause	to	return	unique	values.

DML	Data	Manipulation	Language.	The	part	of	the	SQL	syntax	that	specifically	deals
with	manipulating	data,	such	as	that	used	in	update	statements.

domain	An	object	that	is	associated	with	a	data	type	to	which	constraints	may	be	attached;
similar	to	a	user-defined	type.

DQL	Data	Query	Language.	The	part	of	the	SQL	syntax	that	specifically	deals	with

querying	data	using	the	SELECT	statement.

end	user	Users	whose	jobs	require	them	to	query	or	manipulate	data	in	the	database.	The
end	user	is	the	individual	for	which	the	database	exists.

field	Another	name	for	a	column	in	a	table.	See	column.

foreign	key	One	or	more	columns	whose	values	are	based	on	the	primary	key	column
values	in	another	table.

full	table	scan	The	search	of	a	table	from	a	query	without	the	use	of	an	index.

function	An	operation	that	is	predefined	and	can	be	used	in	a	SQL	statement	to
manipulate	data.

GUI	Graphical	user	interface.	This	is	what	an	application	interface	is	typically	referred	to
when	it	provides	graphical	elements	for	the	user	to	interact	with.

host	The	computer	on	which	a	database	is	located.

index	Pointers	to	table	data	that	make	access	to	a	table	more	efficient.

JDBC	Java	Database	Connectivity.	Software	that	allows	a	Java	program	to	communicate
with	a	database	to	process	data.

join	Combines	data	from	different	tables	by	linking	columns.	Used	in	the	WHERE	clause
of	a	SQL	statement.

key	A	column	or	columns	that	identify	rows	of	a	table.

normalization	Designing	a	database	to	reduce	redundancy	by	breaking	large	tables	into
smaller,	more	manageable	ones.

NULL	value	A	value	that	is	unknown.

objects	Elements	in	a	database,	such	as	triggers,	tables,	views,	and	procedures.

ODBC	Open	Database	Connectivity.	Software	that	allows	for	standard	communication
with	a	database.	ODBC	is	typically	used	for	interdatabase	communication	between
different	implementations	and	for	communication	between	a	client	application	and	a
database.

operator	A	reserved	word	or	symbol	that	performs	an	operation,	such	as	addition	or
subtraction.

optimizer	Internal	mechanism	of	the	database	(consists	of	rules	and	code)	that	decides
how	to	execute	a	SQL	statement	and	return	an	answer.

parameter	A	value	or	range	of	values	to	resolve	a	part	of	a	SQL	statement	or	program.

primary	key	A	specified	table	column	that	uniquely	identifies	rows	of	the	table.

privilege	Specific	permissions	that	are	granted	to	users	to	perform	a	specific	action	in	the
database.

procedure	A	set	of	instructions	that	are	saved	for	repeated	calling	and	execution.

public	A	database	user	account	that	represents	all	database	users.

query	A	SQL	statement	that	retrieves	data	from	a	database.

record	Another	name	for	a	row	in	a	table.	See	row.

referential	integrity	Ensures	the	existence	of	every	value	of	a	column	from	a	parent	that
is	referenced	in	another	table.	This	ensures	that	the	data	in	your	database	is	consistent.

relational	database	A	database	that	is	organized	into	tables	that	consist	of	rows,	which
contain	the	same	sets	of	data	items,	where	tables	in	the	database	are	related	to	one	another
through	common	keys.

role	A	database	object	that	is	associated	with	a	group	of	system	or	object	privileges,	used
to	simplify	security	management.

ROLLBACK	A	command	that	undoes	all	transactions	since	the	last	COMMIT	or
SAVEPOINT	command	was	issued.

row	Sets	of	records	in	a	table.

savepoint	A	specified	point	in	a	transaction	to	which	you	can	roll	back	or	undo	changes.

schema	A	set	of	related	objects	in	a	database	owned	by	a	single	database	user.

security	The	process	of	ensuring	that	data	in	a	database	is	fully	protected	at	all	times.

spatial	reference	system	A	system	that	denotes	the	projection	of	points	onto	a	map
surface.

spatial	types	One	of	the	two	types	of	spatial	data,	geography	or	geometry.

SQL	Structured	Query	Language.	Designed	for	use	with	databases	and	used	to	manage
the	data	within	those	systems.

stored	procedure	SQL	code	that	is	stored	in	a	database	and	ready	to	execute.

subquery	A	SELECT	statement	embedded	within	another	SQL	statement.

synonym	Another	name	given	to	a	table	or	view.

syntax	for	SQL	A	set	of	rules	that	shows	mandatory	and	optional	parts	of	a	SQL
statement’s	construction.

system	catalog	Collection	of	tables	or	views	that	contain	information	about	the	database.

table	The	basic	logical	storage	unit	for	data	in	a	relational	database.

transaction	One	or	more	SQL	statements	that	are	executed	as	a	single	unit.

trigger	A	stored	procedure	that	executes	upon	specified	events	in	a	database,	such	as
before	or	after	an	update	of	a	table.

user-defined	type	A	data	type	that	is	defined	by	a	user,	which	defines	table	columns.

variable	A	value	that	does	not	remain	constant.

view	A	database	object	that	is	created	from	one	or	more	tables	and	can	be	used	the	same
as	a	table.	A	view	is	a	virtual	table	that	has	no	storage	requirements	of	its	own.

Index

A
accessing	remote	databases,	339-340

JDBC	(Java	Database	Connectivity),	340

ODBC	(Open	Database	Connectivity),	339-340

OLE	DB,	340

vendor	connectivity	product,	340-341

Web	interfaces,	341-342

adding

columns

auto-incrementing	columns,	40-41

to	tables,	40

time	to	dates,	186-187

addition,	128

ADMIN	OPTION,	288

aggregate	functions,	133-134,	334

AVG,	138-139

COUNT,	134-136

creating	groups	and,	147-150

DISTINCT,	141

MAX,	139-140

MIN,	140-141

SUM,	136-138

aliases,	table	aliases,	200

ALL,	118-120

ALTER	ANY	TABLE,	285

ALTER	DATABASE,	285

ALTER	TABLE,	39,	47,	357

ALTER	USER,	285

ALTER	VIEW,	300

altering

indexes,	250

users,	277-278

American	National	Standards	Institute	(ANSI),	2,	159

AND,	120-121

ANSI	(American	National	Standards	Institute),	2,	159

ANSI	SQL,	2,	349

ANSI	standard,	SELECT,	348

ANY,	118-120

arguments,	94

arithmetic	operators,	128

addition,	128

combinations,	130

division,	129

multiplication,	129

subtraction,	128-129

arranging	tables,	FROM	clause,	257

ASCII	function,	172

asterisks,	94-95

auto-incrementing	columns,	adding	to	tables,	40-41

AVG,	138-139

avoiding

full	table	scans,	260

HAVING	clause,	263

large	sort	operations,	263

OR,	performance,	262-263

B
back-end	applications,	337-338

BACKUP	ANY	TABLE,	285

BACKUP	DATABASE,	285

base	tables,	joins,	207-208

basic	data	types,	20-21

BOOLEAN	values,	26-27

date	and	time	data	types,	24-25

decimal	types,	23-24

domains,	28

fixed-length	strings,	21

floating-point	decimals,	24

integers,	24

large	object	types,	22

literal	strings,	25-26

NULL	data	types,	26

numeric	types,	22-23

user-defined	data	types,	27

varying-length	strings,	21-22

batch	loads,	disabling	indexes	during,	264

benefits	of	normalization,	62-63

BETWEEN,	115

BLOB,	22

bonus	exercises,	411-423

BOOLEAN	values,	26-27

C
call-level	interface	(CLI),	331-332

Canary	Airlines,	11-12

cardinality,	columns,	250

Cartesian	product,	joins,	208-210

CASCADE,	289,	305

case-sensitivity,	101-102

data,	68

CAST	operator,	188

character	functions,	159-160

ASCII	function,	172

COALESCE,	170-171

combining,	176-177

CONCAT,	160-162

ISNULL,	169-170

LENGTH,	169

LOWER,	163-164

LPAD,	171

LTRIM,	167-168

REPLACE,	166

RPAD,	171-172

RTRIM,	168

SUBSTR,	164-165

TRANSLATE,	165-166

UPPER,	162-163

character	strings

converting	dates	to,	191-192

converting	numbers	to,	175-176

converting	to	dates,	192-193

converting	to	numbers,	173-174

check	constraints,	48-49

CLI	(call-level	interface),	331-332

client/server	model,	5-6

closing	cursors,	326

COALESCE,	170-171

Codd,	Dr.	E.F.,	2

coding	standards,	257

collation,	101

column	aliases,	queries,	105-106

column	lists,	ordering,	70

columns,	14

adding	auto-incrementing	columns,	40-41

adding	mandatory	columns	to	tables,	40

cardinality,	250

controlling	user	access	on	individual	columns,	289-290

inserting	data	into	limited	columns,	69-70

modifying,	41-42

qualifying	in	queries,	199

restricting	access	with	views,	299

tables,	part	of,	35-36

updating

multiple	columns,	74-75

value	of	single	column,	74

combining

arithmetic	operators,	130

character	functions,	176-177

commands,	8-11

data	administration	commands,	10-11

DCL	(Data	Control	Language),	10

DDL	(Data	Definition	Language),	9

DML	(Data	Manipulation	Language),	9-10

DQL	(Data	Query	Language),	10

transactional	control	commands,	11

COMMIT,	11,	357

controlling	transactions,	83-84

comparing

GROUP	BY	clause	versus	ORDER	BY	clause,	150-153

single	queries	versus	compound	queries,	229-230

comparison	operators,	110

combinations	of,	113

equality,	110

less	than	and	greater	than,	111-112

non-equality,	111

compliance,	ANSI	SQL,	349

composite	indexes,	247

compound	queries

GROUP	BY	clause,	237-238

ORDER	BY	clause,	235-236

retrieving	accurate	data,	238-239

versus	single	queries,	229-230

compound	query	operators,	230

EXCEPT,	234-235

INTERSECT,	233-234

UNION,	230-232

UNION	ALL,	232-233

CONCAT,	160-162

concatenation,	160

conjunctive	operators,	120

AND,	120-121

OR,	121-123

CONNECT,	8

constraints,	dropping,	49.	See	also	integrity	constraints

controlling

privileges	through	roles,	291

CREATE	ROLE,	292

DROP	ROLE,	292

SET	ROLE,	292-293

transactions,	82-83

COMMIT,	83-84

RELEASE	SAVEPOINT,	89

ROLLBACK,	85-86

ROLLBACK	TO	SAVEPOINT,	87-89

SAVEPOINT,	86

SET	TRANSACTION,	89

user	access,	287

GRANT,	287-288

on	individual	columns,	289

privileges,	290-291

PUBLIC	database	account,	289-290

REVOKE,	289

conversion	functions,	173

converting	numbers	to	character	strings,	175-176

converting	character	strings	to	numbers,	173-174

conversions,	date	conversions,	188

date	pictures,	189-191

converting

character	strings	to	dates,	192-193

character	strings	to	numbers,	173-174

dates	to	character	strings,	191-192

numbers	to	character	strings,	175-176

correlated	subqueries,	223-224

cost-based	optimization,	performance,	264-265

COUNT,	104,	134-136

counting	records	in	tables,	103-104

CREATE	ANY	TABLE,	285

CREATE	DATABASE,	285

CREATE	INDEX,	245,	357

CREATE	PROCEDURE,	285

CREATE	ROLE,	292,	357

CREATE	SCHEMA,	275-276

CREATE	SYNONYM,	309

CREATE	TABLE	AS,	358

CREATE	TABLE,	37-39,	245,	285,	358

CREATE	TRIGGER,	285,	329-330

CREATE	TYPE,	358

CREATE	USER,	273,	285,	358

CREATE	VIEW,	285,	300,	358

cross	joins,	208-210

CUBE	expression,	grouping	data,	153-155

current	date,	183-184

cursors,	323-324

closing,	326

fetching	data,	325-326

grouping,	145

CUBE	expression,	153-155

GROUP	BY	clause.	See	GROUP	BY	clause

HAVING	clause,	155-156

ROLLUP	expression,	153-155

inserting

in	limited	columns	of	tables,	69-70

from	other	tables,	70-72

in	tables,	68-69

opening,	324

populating	tables,	68

redundancy

denormalization,	63-64

logical	database	design,	57-58

retrieving	accurate	data,	compound	query	operators,	238-239

selecting	from	multiple	tables,	197

summarized	data,	views,	299

tables.	See	tables

updating,	73

multiple	columns,	74-75

through	views,	307

value	of	single	column,	74

D
Data	access,	simplifying	with	views,	298-299

Data	Control	Language	(DCL),	10

Data	Definition	Language	(DDL),	9

data	dictionary.	See	system	catalog

data	manipulation,	overview,	67

Data	Manipulation	Language.	See	DML	(Data	Manipulation	Language)

Data	Query	Language.	See	DQL	(Data	Query	Language)

data	types,	19

basic	data	types,	20-21

BOOLEAN	values,	26-27

date	and	time	data	types,	24-25,	182

decimal	types,	23-24

fixed-length	strings,	21

floating-point	decimals,	24

integers,	24

large	object	types,	22

NULL	data	types,	26

numeric	types,	22-23

user-defined	data	types,	27

varying-length	strings,	21-22

database	administrator	(DBA),	19

database	design	information,	system	catalog,	316

database	management	system	(DBMS),	1

database	objects,	schemas,	33-35

database	queries,	93

case-sensitivity,	101-102

constraints,	103

SELECT,	93-96

FROM	clause,	97

ORDER	BY	clause,	99-101

SELECT	clause,	94-96

WHERE	clause,	97-98

writing,	102-103

column	aliases,	105-106

counting	records	in	tables,	103-104

selecting	data	from	another	table,	105

database	security,	283-284

controlling	privileges	through	roles,	291-292

CREATE	ROLE,	292

DROP	ROLE,	292

SET	ROLE,	292-293

controlling	user	access,	287

GRANT,	287-288

on	individual	columns,	289

PUBLIC	database	account,	289-290

REVOKE,	289

database	tuning,	254

versus	SQL	statement	tuning,	254

database	vendors,	7-8

databases

defined,	4-5

denormalization,	63-64

relational,	5

web-based	database	systems,	6-7

DATE,	182

date	and	time,	182

adding	time	to	dates,	186-187

current	date,	183-184

leap	years,	182

time	zones,	184-185

date	and	time	data	types,	24-25,	182

implementation-specific	data	types,	183

date	and	time	storage,	181

date	conversions,	188

date	pictures,	189

date	functions,	183,	187-188

converting	dates	to	character	strings,	191-192

current	date,	183-184

time	zones,	184-185

date	pictures,	189

dates

adding	time	to,	186-187

converting	character	strings	to,	192-193

converting	to	character	strings,	191-192

DATETIME,	24-25

basic	data	types,	literal	strings,	25-26

converting	character	strings	to	dates,	192-193

converting	dates	to	character	strings,	191-192

data	types,	182

date	parts	by	platform,	189-191

DATETIME	elements,	182

DB_DATAREADER,	291

DB_DATAWRITER,	291

DB_DDLADMIN,	290

DBA	(database	administrator),	19

DBMS	(database	management	system),	1

DCL	(Data	Control	Language),	10

DDL	(Data	Definition	Language),	9

decimal	types,	23-24

DELETE	statement,	75-76,	358

subqueries,	218-219

deleting	data	from	tables,	75-76

denormalization,	63-64

differences	between	implementation,	347-349

Direct	SQL,	333

disabling	indexes	during	batch	loads,	264

DISCONNECT,	8

DISTINCT,	96

aggregate	functions,	141

MIN,	140-141

division,	129

DML	(Data	Manipulation	Language),	9-10

INSERT	statement,	subqueries,	217

overview,	67

domains,	data	types,	28

DQL	(Data	Query	Language),	10

SELECT,	93-94

DROP,	279

DROP	INDEX,	359

DROP	ROLE,	292

DROP	SCHEMA,	277

DROP	SYNONYM,	310

DROP	TABLE,	285,	359

DROP	USER,	285,	359

DROP	VIEW,	307-308,	359

dropping

constraints,	49

indexes,	250-251

schemas,	277

synonyms,	310

tables,	44

used	by	views,	298

triggers,	331

views,	307-308

dynamic	SQL,	331

E
elements	of

DATETIME,	182

tables,	modifying,	40

embedded	functions,	177

embedded	SQL,	333

embedded	subqueries,	219-223

end	user	needs,	logical	database	design,	57

enterprises,	337

back-end	applications,	337-338

front-end	applications,	338-339

equality	operators,	110

equijoins,	198-200

examples,	Canary	Airlines,	11-12

EXISTS,	117-118

EXIT,	8

EXPLAIN	PLAN,	265

extensions	to	SQL,	349

EXTRACTVALUE,	334

F
FETCH,	325-326

fetching	data	from	cursors,	325-326

fields,	14

first	normal	form,	58-59

fixed-length	strings,	21

FLOAT,	24

floating-point	decimals,	24

foreign	key	constraints,	46-47

formatting	SQL	statements,	254

arranging	tables	in	FROM	clause,	257

most	restrictive	condition,	258-259

ordering	join	conditions,	257-258

for	readability,	255-257

FROM	clause,	360

arranging	tables,	257

with	SELECT,	97

front-end	applications,	338-339

full	table	scans,	243,	260-261

avoiding,	260

functions

aggregate	functions,	133-134,	334

AVG,	138-139

COUNT,	134-136

creating	groups,	147-150

MAX,	139-140

MIN,	140-141

SUM,	136-138

character	functions,	159-160

ASCII	function,	172

COALESCE,	170-171

combining,	176-177

CONCAT,	160-162

ISNULL,	169-170

LENGTH,	169

LOWER,	163-164

LPAD,	171

LTRIM,	167-168

REPLACE,	166

RPAD,	171-172

RTRIM,	168

SUBSTR,	164-165

TRANSLATE,	165-166

UPPER,	162-163

conversion	functions,	173

converting	character	strings	to	numbers,	173-174

converting	numbers	to	character	strings,	175-176

date	functions,	183,	187-188

current	date,	183-184

time	zones,	184-185

embedded	functions,	177

EXTRACTVALUE,	334

mathematical	functions,	172-173

TRANSLATE,	160

windowed	table	functions,	333-334

G

generating	SQL,	332-333

GETDATE(),	184

GRANT,	273,	359

controlling	user	access,	287-288

GRANT	ENABLE	TO,	333

GRANT	ENABLE	TO	USERNAME,	333

GRANT	OPTION,	288-289

granting	privileges,	287

greater	than	operators,	111-112

GROUP	BY	clause,	145-146,	361

with	compound	queries,	237-238

creating	groups	with	aggregate	functions,	147-150

grouping	selected	data,	147

versus	ORDER	BY,	150-153

group	functions,	GROUP	BY	clause,	146

grouping	data,	145

CUBE	expression,	153-155

GROUP	BY	clause.	See	GROUP	BY	clause

HAVING	clause,	155-156

ROLLUP	expression,	153-155

GUI	tools,	279

H
HAVING	clause,	361

avoiding,	263

grouping	data,	155-156

home	pages,	342

I
implementation

differences	between,	347-349

system	catalog	tables,	316-317

implicit	indexes,	247-248

IN	operator,	115-116

indexes

altering,	250

composite	indexes,	247

creating,	245

CREATE	INDEX,	245

disabling	during	batch	loads,	264

dropping,	250-251

how	they	work,	244-245

implicit,	247-248

overview,	243-244

reasons	for	using,	248

reasons	to	avoid,	248-250

single-column,	246

unique,	246-247

ineffective	indexes,	249

information	stored	in	system	catalog,	315

inner	joins,	198-200

INSERT	statement,	68-69,	286,	359

subqueries,	217

INSERT(column_name),	286

inserting

data

in	limited	columns	of	tables,	69-70

in	tables,	68-69

from	other	tables,	70-72

NULL	values,	72-73

INSERT…SELECT,	359

installing

Microsoft	SQL	Server	on	Windows,	365-367

Oracle	on	Windows,	363-365

integers,	data	types,	24

integrity,	referential	integrity,	44-47,	62-63

integrity	constraints,	44

check	constraints,	48-49

foreign	key	constraints,	46-47

NOT	NULL	constraints,	48

primary	key	constraints,	44-45

unique	constraints,	46

interactive	SQL	statements,	353-354

International	Standards	Organization	(ISO),	2

Internet

making	data	available	to	employees	and	privileged	customers,	342

making	data	available	worldwide,	342

security,	343

web	interfaces,	341

INTERSECT,	233-234

INTERVAL	command,	187

intranets

making	data	available	to	employees	and	privileged	customers,	342

SQL	and,	343-344

IS	NOT	NULL,	127

IS	NULL,	127

ISNULL,	135,	169-170

ISO	(International	Standards	Organization),	2

J
JDBC	(Java	Database	Connectivity),	340

JOIN,	199

joins,	198

base	tables,	207-208

Cartesian	product,	208-210

cross	joins,	208-210

equijoins,	198-200

joining	multiple	keys,	206-207

non-equijoin	joins,	200-201

ordering,	257-258

outer	joins,	201-204

self	joins,	204-206

table	aliases,	200

K
keys

joining	multiple	keys,	206-207

primary	keys,	14,	44

keywords

COMMIT,	83

SELECT,	95

SET,	75

L
LAN	(local	area	network),	6

large	object	types,	22

large	sort	operations,	avoiding,	263

leap	years,	182

LENGTH,	169

less	than	operators,	111-112

LIKE,	116-117

performance,	261-262

limitations	of	normalization,	63

local	area	network	(LAN),	6

logical	database	design,	normalization,	57

data	redundancy,	57-58

end	user	needs,	57

logical	model,	57

logical	operators,	113-114

ALL,	118-120

ANY,	118-120

BETWEEN,	115

EXISTS,	117-118

IN,	115-116

IS	NULL,	114

LIKE,	116-117

SOME,	118-120

LOWER	function,	163-164

LPAD,	171

LTRIM,	167-168

M
mathematical	functions,	172-173

MAX,	139-140

Microsoft	SQL	Server

installing,	365-367

privileges,	290-291

SELECT,	348-

users,	creating,	274

MIN,	140-141

modifying

columns,	41-42

indexes,	250

tables

adding	auto-incrementing	columns,	40-41

adding	mandatory	columns,	40

ALTER	TABLE,	39

columns,	41-42

elements	of,	40

users,	277-278

most	restrictive	condition,	SQL	statements,	formatting,	258-259

multiple	columns,	updating,	74-75

multiple	keys,	joining,	206-207

multiple	tables,	creating	views	from,	302-303

multiplication,	129

MySQL,	352-353

date	parts,	191

users,	creating,	275

N
naming	conventions

normalization,	61-62

savepoints,	87

tables,	13,	39

negative	operators,	123

IS	NOT	NULL,	127

NOT	BETWEEN,	124-125

NOT	EQUAL,	124

NOT	EXISTS,	127-128

NOT	IN,	125-126

NOT	LIKE,	126-127

nested	views,	performance,	308

non-equality	operators,	111

non-equijoin	joins,	200-201

normal	forms,	58

first,	58-59

second,	59-61

third,	61

normalization,	55

benefits	of,	62-63

limitations	of,	63

logical	database	design,	57

data	redundancy,	57-58

end	user	needs,	57

naming	conventions,	61-62

normal	forms,	58

first,	58-59

second,	59-61

third,	61

raw	databases,	56

NOT	BETWEEN,	124-125

NOT	EQUAL,	124

NOT	EXISTS,	127-128

NOT	IN,	125-126

NOT	LIKE,	126-127

NOT	NULL	constraints,	48

NOW,	184

NULL	data	types,	26

NULL	value	checker,	169-170

NULL	values,	14-15

inserting,	72-73

numbers

converting	character	strings	to,	173-174

converting	to	character	strings,	175-176

numeric	types,	22-23

O
ODBC	(Open	Database	Connectivity),	339-340

OLE	DB,	340

opening	cursors,	324

operators,	109-113

arithmetic	operators,	128

addition,	128

combinations,	130

division,	129

multiplication,	129

subtraction,	128-129

comparison	operators,	110-113

equality,	110

less	than	and	greater	than,	111-112

non-equality,	111

conjunctive	operators,	120

AND,	120-121

OR,	121-123

defined,	109

EXCEPT,	234-235

INTERSECT,	233-234

logical	operators,	113-114

ALL,	118-120

ANY,	118-120

BETWEEN,	115

EXISTS,	117-118

IN,	115-116

IS	NULL,	114

LIKE,	116-117

SOME,	118-120

negative	operators,	123

IS	NOT	NULL,	127

NOT	BETWEEN,	124-125

NOT	EQUAL,	124

NOT	EXISTS,	127-128

NOT	IN,	125-126

NOT	LIKE,	126-127

UNION,	229-230

UNION	ALL,	compound	query	operators,	232-233

optimization,	cost-based,	264-265

OR,	121-123

avoiding,	262-263

Oracle

date	parts,	189-190

EXTRACTVALUE,	334

privileges,	290

SELECT,	348-349

Users,	creating,	273-274

for	Windows,	installing,	363-365

Oracle	Fusion	Middleware,	340

ORDER	BY	clause,	146,	361

compound	queries,	235-236

versus	GROUP	BY	clause,	150-153

SELECT,	99-101

views,	306-307

ordering

column	lists,	70

join	conditions,	257-258

outer	joins,	201-204

P
parentheses,	122

arithmetic	operators,	130

DISTINCT,	96

parsing,	264

performance

cost-based	optimization,	264-265

database	tuning,	254

versus	SQL	statement	tuning,	254

HAVING	clause,	avoiding,	263

indexes,	250

disabling	during	batch	loads,	264

large	sort	operations,	avoiding,	263

LIKE,	261-262

nested	views,	308

OR,	avoiding,	262-263

SQL	statement	tuning,	253

stored	procedures,	263-264

subqueries,	225

wildcards,	261-262

performance	statistics,	system	catalog,	316

performance	tools,	265

PL/SQL,	351-352

poor	transactional	control,	90

populating	tables	with	data,	68

primary	key	constraints,	44-45

primary	keys,	14

privileges,	284

controlling	with	roles

CREATE	ROLE,	292

DROP	ROLE,	292

SET	ROLE,	292-293

controlling	user	access,	290-291

granting/revoking,	287

object	privileges,	286

Oracle,	290

SQL	Server,	290-291

system	privileges,	285

pseudocolumns,	184

PUBLIC	database	account,	289-290

Q
qualifying	columns	in	queries,	199

queries

case-sensitivity,	101-102

compound	queries.	See	compound	queries

constraints,	103

SELECT,	93-94

FROM	clause,	97

ORDER	BY	clause,	99-101

SELECT	clause,	94-96

WHERE	clause,	97-98

single	queries	versus	compound	queries,	229-230

subqueries.	See	subqueries

writing,	102-103

column	aliases,	105-106

counting	records	in	tables,	103-104

selecting	data	from	another	table,	105

Query	Analyzer,	265

querying	system	catalog,	317-320

quotation	marks,	69,	161

R
RDBMS	(relational	database	management	system),	1

collation,	101

READ	ONLY,	89

READ	WRITE,	89

readability,	formatting	SQL	statements,	255-257

REAL,	22

records,	14

counting	in	tables,	103-104

redundancy,	data

denormalization,	63-64

logical	database	design,	57-58

REFERENCES,	286

REFERENCES(column_name),	286

referential	integrity,	62-63

relational	database	management	system	(RDBMS),	1,	101

relational	databases,	5

RELEASE	SAVEPOINT,	89

remote	databases,	accessing,	340

JDBC	(Java	Database	Connectivity),	340

ODBC	(Open	Database	Connectivity),	340

OLE	DB,	340

vendor	connectivity	products,	340-341

web	interfaces,	341

removing	user	access,	279

REPLACE,	166

RESTRICT	option,	44

REVOKE,	289

REVOKE,	279,	289,	359

revoking	privileges,	287

roles,	controlling	privileges,	291

ROLLBACK,	360

controlling	transactions,	85-86

rollback	area,	transactions,	82-83

ROLLBACK	TO	SAVE,	controlling	transactions,	87-89

ROLLUP	expression,	grouping	data,	153-155

rows,	14

tables,	36-37

RPAD,	171-172

RTRIM,	168

S
SAVEPOINT,	86,	360

savepoints,	naming	conventions,	87

schemas

creating,	275-276

database	objects	and,	33-35

dropping,	277

versus	users,	271-272

second	normal	form,	59-61

security,	283-284

controlling	privileges	with	roles,	291-292

CREATE	ROLE,	292

DROP	ROLE,	292

SET	ROLE,	292-293

controlling	user	access,	287

GRANT,	287-288

on	individual	columns,	289

privileges,	290-291

PUBLIC	database	account,	289-290

REVOKE,	289

Internet,	343

intranets,	343

privileges,	284

views,	299

SELECT,	10,	286,	360

ANSI	standard,	348

FROM	clause,	97

DML	(Data	Manipulation	Language),	67

keywords,	94

Oracle,	348-349

ORDER	BY	clause,	99-101

SELECT	clause,	94-96

SQL	Server,	348-349

subqueries,	215-217

WHERE	clause,	97-98

SELECT	ANY	TABLE,	285

SELECT	clause,	94-96

selected	data,	grouping	(GROUP	BY	clause),	147

selecting	data

from	another	user’s	table,	105

from	multiple	tables,	197

self	joins,	204-206

sessions,	SQL,	8

CONNECT,	8

DISCONNECT,	8

EXIT,	8

SET	keyword,	75

SET	ROLE,	292-293

SET	TRANSACTION,	11,	89

simplifying	data	access	with	views,	298-299

single	queries	versus	compound	queries,	229-230

single	quotation	marks,	161

single-column	indexes,	246

SOME,	118-120

SP_ADDUSER,	274

special	characters,	161

SQL	(Structured	Query	Language)

ANSI	SQL,	2

direct	SQL,	333

generating,	332-333

intranets	and,	343-344

overview,	2

SQL	clauses,	360

FROM,	360

GROUP	BY,	361

HAVING,	361

ORDER	BY,	361

SELECT,	360

WHERE,	361

SQL	extensions,	349

SQL	optimizer,	255

SQL	Server

date	parts,	189

installing,	365-367

privileges,	290-291

SELECT,	348

users,	creating,	274

SQL	sessions,	8

CONNECT,	8

DISCONNECT,	8

EXIT,	8

SQL	statement	tuning,	253

versus	database	tuning,	254

SQL	statements

formatting,	254

arranging	tables	in	FROM	clause,	257

most	restrictive	condition,	258-259

ordering	join	conditions,	257-258

for	readability,	255-257

interactive	SQL	statements,	353-354

SQL-99,	2

SQL-2011,	2-4

standards

coding	standards,	257

SQL-2011,	3-4

table-naming	standards,	13

storage,	date	and	time,	181

stored	procedures,	263-264,	326-329

strings

fixed-length	strings,	21

literal	strings,	25-26

varying-length	strings,	21-22

subqueries

correlated,	223-224

DELETE	statement,	218-219

embedded,	219-223

INSERT	statement,	217

overview,	213-215

performance,	225

SELECT,	215-217

unknown	values,	215

UPDATE	statement,	218

SUBSTR	function,	164-165

substrings,	160

subtraction,	128-129

SUM,	136-138

summarized	data,	views,	299

synonyms,	308-309

creating,	309

dropping,	310

SYSDATE,	184

system	catalog

creation	of,	314-315

database	design	information,	316

information,	315

overview,	313-314

performance	statistics,	316

querying,	317-320

security	information,	316

tables	by	implementation,	316-317

updating	objects,	320

user	data,	316

T
table	aliases,	200

table-naming	standards,	13

tables,	35

ALTER	TABLE,	39

arranging	in	FROM	clause,	257

base	tables,	joins,	207-208

columns,	14,	35-36

modifying,	41-42

counting	records	in,	103-104

CREATE	TABLE	statement,	37-39

creating

from	existing	tables,	42-44

from	views,	305-306

data

deleting,	75-76

inserting,	68-69

dropping,	44

from	views,	298

fields,	14

full	table	scans,	260-261

inserting	data	from	other	tables,	70-72

modifying

adding	auto-incrementing	columns,	40-41

adding	mandatory	columns,	40

ALTER	TABLE,	39

elements	of,	40

naming	conventions,	-39

NULL	values,	14-15

populating	with	data,	68

primary	keys,	14

records,	14

rows,	14,	36-37

selecting	data	from	multiple,	197

system	catalog,	316-317

temporal	database	support,	3

terminals,	6

testing	WHERE	clause,	258

TEXT,	22

third	normal	form,	61

TIME,	182

time,	adding	to	dates,	186-187

time	zones,	184-185

TIMESTAMP,	182

TKPROF,	265

tools,	GUI	tools,	272

transactions,	81

controlling,	82-83

COMMIT,	83-84

RELEASE	SAVEPOINT,	89

ROLLBACK,	85-86

ROLLBACK	TO	SAVEPOINT,	87-89

SAVEPOINT,	86

SET	TRANSACTION,	89

defined,	81-82

poor	transactional	control,	90

rollback	area,	82-83

TRANSLATE,	160,	165-166

triggers,	329

creating,	329-330

dropping,	331-

U
UNION,	229-232

UNION	ALL,	232-233

unique	constraints,	46

unique	indexes,	246-247

unknown	values,	subqueries,	215

UPDATE	statement,	74,	286,	360

subqueries,	218

UPDATE(column_name),	286

updating

data,	73

multiple	columns,	74-75

through	views,	307

value	of	single	column,	74

system	catalog	objects,	320

UPPER	function,	162-163

USAGE,	286

user	access

controlling,	287

GRANT,	287

on	individual	columns,	289

privileges,	290-291

PUBLIC	database	account,	289-290

REVOKE,	289

removing,	279

user	data,	system	catalog,	316

user	management,	269-272

GUI	tools,	279

schemas

creating,	275-276

dropping,	277

versus	users,	271-272

types	of	users,	270

user	access,	removing,	279

user	sessions,	278

users

altering,	277-278

creating,	272

creating	in	MySQL,	275

creating	in	Oracle,	273-274

creating	in	SQL	Server,	274

user	sessions,	278

user-defined	data	types,	27

users

altering,	277-278

creating,	272

in	MySQL,	275

in	Oracle,	273-274

in	SQL	Server,	274

versus	schemas,	271-272

types	of,	270

V
varying-length	strings,	21-22

vendor	connectivity	products,	340-341

vendors,	database	vendors,	7-8

view	dependencies,	303

views,	297-298

creating,	300

WITH	CHECK	OPTION,	304-305

from	multiple	tables,	302-303

from	a	single	table,	300-302

tables	from,	305-306

from	views,	303-304

dropping,	307-308

dropping	tables,	298

nested	views,	performance,	308

ORDER	BY	clause,	306-307

as	security,	299

simplifying	data	access,	298-299

summarized	data,	299

updating	data,	307

W
WAN	(wide	area	network),	6

web	interfaces,	341

web-based	database	systems,	6-7

WHERE	clause,	74,	76,	97-98,	103

testing,	258

wide	area	network	(WAN),	6

wildcards,	performance,	261-262

windowed	table	functions,	333-334

Windows

Microsoft	SQL	Server,	installing,	365-367

Oracle,	installing,	363-365

WITH	CHECK	OPTION,	304-305

writing

database	queries,	102-103

column	aliases,	105-106

selecting	data	from	another	table,	105

queries,	counting	records	in	tables,	103-104

X-Y-Z
XML,	334-335

Code	Snippets

	About This E-Book
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Authors
	Dedication
	Acknowledgments
	We Want to Hear from You!
	Reader Services
	Part I: An SQL Concepts Overview
	Hour 1. Welcome to the World of SQL
	SQL Definition and History
	What Is SQL?
	What Is ANSI SQL?
	The Current Standard: SQL-2011
	What Is a Database?
	The Relational Database
	Client/Server Technology
	Web-Based Database Systems
	Popular Database Vendors

	SQL Sessions
	CONNECT
	DISCONNECT and EXIT

	Types of SQL Commands
	Defining Database Structures
	Manipulating Data
	Selecting Data
	Data Control Language
	Data Administration Commands
	Transactional Control Commands

	Canary Airlines: The Database Used in This Book
	Table-Naming Standards
	A Look at Sample Data
	Examples and Exercises

	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Part II: Building Your Database
	Hour 2. Defining Data Structures
	What Is Data?
	Basic Data Types
	Fixed-Length Strings
	Varying-Length Strings
	Large Object Types
	Numeric Types
	Decimal Types
	Integers
	Floating-Point Decimals
	Date and Time Types
	Literal Strings
	NULL Data Types
	BOOLEAN Values
	User-Defined Types
	Domains

	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Hour 3. Managing Database Objects
	Database Objects and Schema
	Tables: The Primary Storage for Data
	Columns
	Rows
	The CREATE TABLE Statement
	Naming Conventions
	Creating a Table from an Existing Table
	Dropping Tables

	Integrity Constraints
	Primary Key Constraints
	Unique Constraints
	Foreign Key Constraints
	NOT NULL Constraints
	Check Constraints
	Dropping Constraints

	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Hour 4. The Normalization Process
	Normalizing a Database
	The Raw Database
	Logical Database Design
	Normal Forms
	Naming Conventions
	Benefits of Normalization
	Drawbacks of Normalization

	Denormalizing a Database
	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Hour 5. Manipulating Data
	Overview of Data Manipulation
	Populating Tables with New Data
	Inserting Data into a Table
	Inserting Data into Limited Columns of a Table
	Inserting Data from Another Table
	Inserting NULL Values

	Updating Existing Data
	Updating the Value of a Single Column
	Updating Multiple Columns in One or More Records

	Deleting Data from Tables
	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Hour 6. Managing Database Transactions
	What Is a Transaction?
	Controlling Transactions
	The COMMIT Command
	The ROLLBACK Command
	The SAVEPOINT Command
	The SET TRANSACTION Command

	Poor Transactional Control
	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Part III: Getting Effective Results from Queries
	Hour 7. Introduction to Database Queries
	The SELECT Statement
	The SELECT Clause
	The FROM Clause
	The WHERE Clause
	The ORDER BY Clause

	Case-Sensitivity
	Fundamentals of Query Writing
	Counting the Records in a Table
	Selecting Data from Another User’s Table
	Using Column Aliases

	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Hour 8. Using Operators to Categorize Data
	What Is an Operator in SQL?
	Comparison Operators
	Equality
	Non-Equality
	Less Than and Greater Than
	Combinations of Comparison Operators

	Logical Operators
	IS NULL
	BETWEEN
	IN
	LIKE
	EXISTS
	ALL, SOME, and ANY

	Conjunctive Operators
	AND
	OR

	Negative Operators
	NOT EQUAL
	NOT BETWEEN
	NOT IN
	NOT LIKE
	IS NOT NULL
	NOT EXISTS

	Arithmetic Operators
	Addition
	Subtraction
	Multiplication
	Division
	Arithmetic Operator Combinations

	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Hour 9. Summarizing Data Results from a Query
	Aggregate Functions
	COUNT
	SUM
	AVG
	MAX
	MIN

	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Hour 10. Sorting and Grouping Data
	Why Group Data?
	The GROUP BY Clause
	Group Functions
	Grouping Selected Data
	Creating Groups and Using Aggregate Functions

	GROUP BY Versus ORDER BY
	CUBE and ROLLUP Expressions
	The HAVING Clause
	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Hour 11. Restructuring the Appearance of Data
	ANSI Character Functions
	Common Character Functions
	The CONCAT Function
	The UPPER Function
	The LOWER Function
	The SUBSTR Function
	The TRANSLATE Function
	The REPLACE Function
	The LTRIM Function
	The RTRIM Function

	Miscellaneous Character Functions
	The LENGTH Function
	The ISNULL Function (NULL Value Checker)
	The COALESCE Function
	The LPAD Function
	The RPAD Function
	The ASCII Function

	Mathematical Functions
	Conversion Functions
	Converting Character Strings to Numbers
	Converting Numbers to Character Strings

	Combining Character Functions
	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Hour 12. Understanding Dates and Times
	How Is a Date Stored?
	Standard Data Types for the Date and Time
	DATETIME Elements
	Implementation-Specific Data Types

	Date Functions
	The Current Date
	Time Zones
	Adding Time to Dates
	Miscellaneous Date Functions

	Date Conversions
	Date Pictures
	Converting Dates to Character Strings
	Converting Character Strings to Dates

	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Part IV: Building Sophisticated Database Queries
	Hour 13. Joining Tables in Queries
	Selecting Data from Multiple Tables
	Understanding Joins
	Joins of Equality
	Using Table Aliases
	Joins of Non-Equality
	Outer Joins
	Self Joins
	Joining on Multiple Keys

	Join Considerations
	Using a Base Table
	The Cartesian Product

	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Hour 14. Using Subqueries to Define Unknown Data
	What Is a Subquery?
	Subqueries with the SELECT Statement
	Subqueries with the INSERT Statement
	Subqueries with the UPDATE Statement
	Subqueries with the DELETE Statement

	Embedded Subqueries
	Correlated Subqueries
	Subquery Performance
	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Hour 15. Combining Multiple Queries into One
	Single Queries Versus Compound Queries
	Compound Query Operators
	The UNION Operator
	The UNION ALL Operator
	The INTERSECT Operator
	The EXCEPT Operator

	Using ORDER BY with a Compound Query
	Using GROUP BY with a Compound Query
	Retrieving Accurate Data
	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Part V: SQL Performance Tuning
	Hour 16. Using Indexes to Improve Performance
	What Is an Index?
	How Do Indexes Work?
	The CREATE INDEX Command
	Types of Indexes
	Single-Column Indexes
	Unique Indexes
	Composite Indexes
	Implicit Indexes

	When Should Indexes Be Considered?
	When Should Indexes Be Avoided?
	Altering an Index
	Dropping an Index
	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Hour 17. Improving Database Performance
	What Is SQL Statement Tuning?
	Database Tuning Versus SQL Statement Tuning
	Formatting Your SQL Statement
	Formatting a Statement for Readability
	Arranging Tables in the FROM Clause
	Ordering Join Conditions
	The Most Restrictive Condition

	Full Table Scans
	Other Performance Considerations
	Using the LIKE Operator and Wildcards
	Avoiding the OR Operator
	Avoiding the HAVING Clause
	Avoiding Large Sort Operations
	Using Stored Procedures
	Disabling Indexes During Batch Loads

	Cost-Based Optimization
	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Part VI: Using SQL to Manage Users and Security
	Hour 18. Managing Database Users
	User Management in the Database
	Types of Users
	Who Manages Users?
	The User’s Place in the Database
	How Does a User Differ from a Schema?

	The Management Process
	Creating Users
	Creating Schemas
	Dropping a Schema
	Altering Users
	User Sessions
	Removing User Access

	Tools Utilized by Database Users
	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Hour 19. Managing Database Security
	What Is Database Security?
	What Are Privileges?
	System Privileges
	Object Privileges
	Who Grants and Revokes Privileges?

	Controlling User Access
	The GRANT Command
	The REVOKE Command
	Controlling Access on Individual Columns
	The PUBLIC Database Account
	Groups of Privileges

	Controlling Privileges Through Roles
	The CREATE ROLE Statement
	The DROP ROLE Statement
	The SET ROLE Statement

	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Part VII: Summarized Data Structures
	Hour 20. Creating and Using Views and Synonyms
	What Is a View?
	Utilizing Views to Simplify Data Access
	Utilizing Views as a Form of Security
	Utilizing Views to Maintain Summarized Data

	Creating Views
	Creating a View from a Single Table
	Creating a View from Multiple Tables
	Creating a View from a View
	WITH CHECK OPTION
	Creating a Table from a View
	Views and the ORDER BY Clause

	Updating Data Through a View
	Dropping a View
	Performance Impact of Nested Views
	What Is a Synonym?
	Creating Synonyms
	Dropping Synonyms

	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Hour 21. Working with the System Catalog
	What Is the System Catalog?
	How Is the System Catalog Created?
	What Is Contained in the System Catalog?
	User Data
	Security Information
	Database Design Information
	Performance Statistics

	System Catalog Tables by Implementation
	Querying the System Catalog
	Updating System Catalog Objects
	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Part VIII: Applying SQL Fundamentals in Today’s World
	Hour 22. Advanced SQL Topics
	Cursors
	Opening a Cursor
	Fetching Data from a Cursor
	Closing a Cursor

	Stored Procedures and Functions
	Triggers
	The CREATE TRIGGER Statement
	The DROP TRIGGER Statement

	Dynamic SQL
	Call-Level Interface
	Using SQL to Generate SQL
	Direct Versus Embedded SQL
	Windowed Table Functions
	Working with XML
	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Hour 23. Extending SQL to the Enterprise, the Internet, and the Intranet
	SQL and the Enterprise
	The Back-End Application
	The Front-End Application

	Accessing a Remote Database
	ODBC
	JDBC
	OLE DB
	Vendor Connectivity Products
	Web Interface

	SQL and the Internet
	Making Data Available to Customers Worldwide
	Making Data Available to Employees and Privileged Customers

	SQL and the Intranet
	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Hour 24. Extensions to Standard SQL
	Various Implementations
	Differences Between Implementations
	Compliance with ANSI SQL
	Extensions to SQL

	Example Extensions
	Transact-SQL
	PL/SQL
	MySQL

	Interactive SQL Statements
	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Part IX: Appendixes
	Appendix A. Common SQL Commands
	SQL Statements
	ALTER TABLE
	COMMIT
	CREATE INDEX
	CREATE ROLE
	CREATE TABLE
	CREATE TABLE AS
	CREATE TYPE
	CREATE USER
	CREATE VIEW
	DELETE
	DROP INDEX
	DROP TABLE
	DROP USER
	DROP VIEW
	GRANT
	INSERT
	INSERT...SELECT
	REVOKE
	ROLLBACK
	SAVEPOINT
	SELECT
	UPDATE

	SQL Clauses
	SELECT
	FROM
	WHERE
	GROUP BY
	HAVING
	ORDER BY

	Appendix B. Installing Oracle and Microsoft SQL
	Windows Installation Instructions for Oracle
	Windows Installation Instructions for Microsoft SQL Server

	Appendix C. Answers to Quizzes and Exercises
	Hour 1, “Welcome to the World of SQL”
	Quiz Answers
	Exercise Answers

	Hour 2, “Defining Data Structures”
	Quiz Answers
	Exercise Answers

	Hour 3, “Managing Database Objects”
	Quiz Answers
	Exercise Answers

	Hour 4, “The Normalization Process”
	Quiz Answers
	Exercise Answers

	Hour 5, “Manipulating Data”
	Quiz Answers
	Exercise Answers

	Hour 6, “Managing Database Transactions”
	Quiz Answers
	Exercise Answers

	Hour 7, “Introduction to the Database Queries”
	Quiz Answers
	Exercise Answers

	Hour 8, “Using Operators to Categorize Data”
	Quiz Answers
	Exercise Answers

	Hour 9, “Summarizing Data Results from a Query”
	Quiz Answers
	Exercise Answers

	Hour 10, “Sorting and Grouping Data”
	Quiz Answers
	Exercises

	Hour 11, “Restructuring the Appearance of Data”
	Quiz Answers
	Exercise Answers

	Hour 12, “Understanding Dates and Times”
	Quiz Answers
	Exercise Answers

	Hour 13, “Joining Tables in Queries”
	Quiz Answers
	Exercise Answers

	Hour 14, “Using Subqueries to Define Unknown Data”
	Quiz Answers
	Exercise Answers

	Hour 15, “Combining Multiple Queries into One”
	Quiz Answers
	Exercise Answers

	Hour 16, “Using Indexes to Improve Performance”
	Quiz Answers
	Exercise Answers

	Hour 17, “Improving Database Performance”
	Quiz Answers
	Exercise Answers

	Hour 18, “Managing Database Users”
	Quiz Answers
	Exercise Answers

	Hour 19, “Managing Database Security”
	Quiz Answers
	Exercise Answers

	Hour 20, “Creating and Using Views and Synonyms”
	Quiz Answers
	Exercise Answers

	Hour 21, “Working with the System Catalog”
	Quiz Answers
	Exercise Answers

	Hour 22, “Advanced SQL Topics”
	Quiz Answers
	Exercise Answers

	Hour 23, “Extending SQL to the Enterprise, the Internet, and the Intranet”
	Quiz Answers
	Exercise Answers

	Hour 24, “Extensions to Standard SQL”
	Quiz Answers
	Exercise Answers

	Appendix D. Bonus Exercises
	Appendix E. Glossary

	Index
	Code Snippets

